Impact and modeling of topographic effects on P-band SAR backscatter from boreal forests
Other conference contribution, 2011

P-band SAR backscatter has been proven to be useful for forest biomass prediction. However, there is a need for further studies on effects of topography on P-band backscatter. In this paper, two prediction models for backscatter are evaluated, one using only biomass as predictor and one which also includes topographic corrections. Data from the BioSAR 2007 and BioSAR 2008 campaigns are used to evaluate the models. A multi-scale error model which is able to handle data from several imaging directions is used. For HH, the slope correction on stand level used in this paper is unable to correct for topographic effects. This is consistent with previous results that within stand topographic variability has a significant impact on HH P-band backscatter. For HV and VV, the model which considers topography gives lower prediction errors than the model which does not include topography. Moreover, for these polarizations topographic the correction strongly reduce the variability in backscatter measurements between imaging directions for stands with ground slopes larger than about 5 degrees.

forest biomass

topography

backscatter

Synthetic aperture radar

Author

Gustaf Sandberg

Chalmers, Earth and Space Sciences, Radar Remote Sensing

Maciej Soja

Chalmers, Earth and Space Sciences, Radar Remote Sensing

Lars Ulander

Chalmers, Earth and Space Sciences, Radar Remote Sensing

Proceedings of IGARSS 2011 Symposium, Vancouver, Canada, 24-29 July, 2011

3522-3525
978-1-4577-1005-6 (ISBN)

Driving Forces

Sustainable development

Innovation and entrepreneurship

Areas of Advance

Transport

Roots

Basic sciences

Subject Categories

Other Electrical Engineering, Electronic Engineering, Information Engineering

DOI

10.1109/IGARSS.2011.6049981

ISBN

978-1-4577-1005-6

More information

Created

10/8/2017