In vivo stability of hydroxyapatite nanoparticles coated on titanium implant surfaces.
Journal article, 2011

Purpose: Nanotechnology has been employed in attempts to enhance bone incorporation of dental implants. Often, nanoparticles are applied to the implant surface as particle coatings. However, the same properties that may increase the functionality may also lead to undiscovered negative effects, such as instability of the nanocoating. The aim of this study was to investigate the stability÷instability of the nanoparticles using a radiolabeling technique. Materials and Methods: Twenty threaded and turned titanium microimplants were inserted in 10 rats. All 20 implants were coated with nanometer-sized hydroxyapatite (HA) particles. In order to trace the HA nanoparticles, the particles for 16 implants were labeled with calcium 45 (45Ca). After 1, 2, 4, and 8 weeks, the implants and surrounding bone were retrieved and analyzed using autoradiography with respect to particle migration from the implant surface. Samples from the brain, liver, thymus, kidney, and blood, as well as wooden shavings from the rats' cages, were also retrieved and analyzed using liquid scintillation counting. Results: The radioactivity representing the localization of 45Ca decreased over time from the vicinity of the implant. The amounts of 45Ca found in the blood and in the rats' excretions decreased with time and corresponded well to each other. After 8 weeks, the only trace of 45Ca was found in the liver. Conclusion: The results indicated that released particles leave the body through the natural cleaning system, and the probability that the nanocoating will assemble in vital organs and thus become a potential biologic risk factor is unlikely. Int J Oral Maxillofac Implants 2011;26:1161-1166.

Author

Ann Wennerberg

University of Gothenburg

Ryo Jimbo

University of Gothenburg

Stefan Allard

Chalmers, Chemical and Biological Engineering, Nuclear Chemistry

Gunnar Skarnemark

Chalmers, Chemical and Biological Engineering, Nuclear Chemistry

Martin Andersson

Chalmers, Chemical and Biological Engineering, Applied Surface Chemistry

The International journal of oral & maxillofacial implants

1942-4434 (ISSN)

Vol. 26 6 1161-6

Subject Categories

Dentistry

PubMed

22167419

More information

Created

10/6/2017