The gauge structure of generalised diffeomorphisms
Journal article, 2013

We investigate the generalised diffeomorphisms in M-theory, which are gauge transformations unifying diffeomorphisms and tensor gauge transformations. After giving an En(n)-covariant description of the gauge transformations and their commutators, we show that the gauge algebra is infinitely reducible, i.e., the tower of ghosts for ghosts is infinite. The Jacobiator of generalised diffeomorphisms gives such a reducibility transformation. We give a concrete description of the ghost structure, and demonstrate that the infinite sums give the correct (regularised) number of degrees of freedom. The ghost towers belong to the sequences of rep- resentations previously observed appearing in tensor hierarchies and Borcherds algebras. All calculations rely on the section condition, which we reformulate as a linear condition on the cotangent directions. The analysis holds for n < 8. At n = 8, where the dual gravity field becomes relevant, the natural guess for the gauge parameter and its reducibility still yields the correct counting of gauge parameters.

Space-Time Symmetries



David S. Berman

Queen Mary University of London

Martin Cederwall

Chalmers, Applied Physics, Mathematical Physics

Axel Kleinschmidt

International Solvay Institute for Physics and Chemistry

Max Planck Society

Daniel C. Thompson

International Solvay Institute for Physics and Chemistry

Journal of High Energy Physics

1126-6708 (ISSN) 1029-8479 (eISSN)

Vol. 1301 1 64- 64


Basic sciences

Subject Categories


Other Physics Topics



More information

Latest update

4/5/2022 6