Using Forming Simulation Results In Virtual Assembly Analysis
Paper in proceedings, 2012

In Car Body Assembly Shops, Body in White (BIW), non-rigid sheet metal panels are assembled into car bodies. Depending upon the achieved degree of robustness in part and tool design, the produced items tend to deviate more or less from their nominal specifications. Catching eventual non-robust solutions early on in the development phases is important to minimize time-consuming, expensive testing and trimming activities late in the development- and industrialization phases. To meet these demands, there is today an increased use of virtual forming and assembly tools within the automotive industry. Significant amounts of research have been performed in the area of forming and assembly simulations, but there is still a need to find efficient working methods. This study has focused upon how forming simulation results can be used in virtual assembly analysis. The predicted springback shapes (offset and variation) of the stamped panels are used in the assembly simulation to study the effects of the part variation when assembled, producing a sub-assembly. The method used is described, and the simulation results are reported. The case shows the potential of using forming simulation results in virtual assembly analysis. Furthermore, the strength of using the Principal Component Analysis technique to describe the part variation in assembly simulations is shown.

sheet metal

assembly simulation

forming simulation


geometry assurance


Björn Lindau

Chalmers, Product and Production Development, Product Development

Alf Andersson

Chalmers, Product and Production Development, Product Development

Lars Lindkvist

Chalmers, Product and Production Development, Product Development

Rikard Söderberg

Chalmers, Product and Production Development, Product Development

Proceedings of the ASME 2012 International Mechanical Engineering Congress & Exposition, IMECE2012

PARTS A, B, AND C 31-38

Subject Categories

Production Engineering, Human Work Science and Ergonomics

Areas of Advance






More information