Efficiency enhancement by mixed cation effect in dye-sensitized solar cells with PAN based gel polymer electrolyte
Journal article, 2012

Dye-sensitized solar cells based on nano-porous TiO2 photo-anode and quasi-solid polymer (or gel) electrolytes are emerging as low cost alternatives to conventional inorganic photovoltaic devices. Although many attempts have been made in order to improve the relatively low power conversion efficiencies of these solar cells, to our knowledge there are very few reports aimed at using a binary system of two different iodide salts toward efficiency enhancement in these cells. In this paper we report for the first time in detail, the effect of using a binary iodide salt mixture with different size cations on the efficiency enhancement in dye sensitized solar cells with polyacrylonitrile (PAN) based gel polymer electrolyte and suggest a possible mechanism for this enhancement, based on short circuit photocurrent which is directly related to the iodide ion concentration [I-]. The gel electrolyte was made of PAN, ethelene carbonate (EC), Propylene carbonate (PC), salt mixture and I-2. The binary iodide salt mixture consists of potassium iodide (KI) and Tetra propyl ammonium iodide (Pr4NI). Although the gel electrolyte with 100% (w/w) KI exhibited the highest overall ionic conductivity at room temperature, it showed the lowest iodide ion (I-) contribution to conductivity. On the other hand, the electrolyte with 100% (w/w) Pr4NI exhibited the lowest overall ionic conductivity but had the highest iodide ion(I-) contribution. The dye-sensitized solar cells of configuration Glass/FTO/TiO2/N-719 Dye/electrolyte/Pt/FTO/glass were fabricated using the gel electrolytes of different salt ratios and with nanoporous TiO2 electrode sensitized with Ruthenium dye (N719). With identical electrolyte compositions, the solar cell with 100% (w/w) KI showed an efficiency of 4.98% and the cell with 100% (w/w) Pr4NI showed an efficiency of 4.47%. However, the cell with the mixed iodide system, 16.6% (w/w) KI + 83.4%(w/w) Pr4NI showed the highest efficiency of 5.36% with maximum short circuit current density (J(SC)) of 13.79 mA cm(-2), open circuit voltage (V-OC) of 679.10 mV and a fill factor of 57.25%. The variation of efficiency (eta) with iodide ion concentration [I-] follows the same trend as the J(SC) which appears to be governed by the iodide ion conductivity of the gel electrolyte. The dependence of the short circuit photocurrent and the open circuit photovoltage on the cation type generally agrees with reported data for related systems. However, the occurrence of a maximum in the solar cell efficiency and short circuit photocurrent at 16.6% (w/w)10 + 83.4% (w/w) Pr4NI salt composition is an important finding. The efficiency enhancement of about 8% achieved by employing the binary iodide mixture in the gel electrolyte instead of a single iodide salt, could be utilized for achieving efficiency enhancement in many dye sensitized solar cell systems based on polymeric, gel or solvent electrolytes.

polyacrylonitrile

charge-injection

films

nanocrystalline tio2

Dye-sensitized solar cells

Mixed cation effect

plasticized electrolyte

Author

M.A.K.L. Dissanayake

National Institute of Fundamental Studies

University of Peradeniya

C. A. Thotawatthage

National Institute of Fundamental Studies

G. K. R. Senadeera

National Institute of Fundamental Studies

Open University of Sri Lanka

T M W J Bandara

Rajarata University of Sri Lanka

W. Jayasundera

University of Peradeniya

Bengt-Erik Mellander

Chalmers, Applied Physics, Solid State Physics

Journal of Photochemistry and Photobiology A: Chemistry

1010-6030 (ISSN)

Vol. 246 29-35

Subject Categories

Physical Sciences

Chemical Sciences

Areas of Advance

Energy

Materials Science

DOI

10.1016/j.jphotochem.2012.06.023

More information

Created

10/6/2017