A comparison formula for residue currents
Preprint, 2012

Given two ideals $\mathcal{I}$ and $\mathcal{J}$ of holomorphic functions such that $\mathcal{I} \subseteq \mathcal{J}$, we describe a comparison formula relating the Andersson-Wulcan currents of $\mathcal{I}$ and $\mathcal{J}$. More generally, this comparison formula holds for residue currents associated to two generically exact complexes of vector bundles, together with a morphism between the complexes. We then show various applications of the comparison formula including generalizing the transformation law for Coleff-Herrera products to Andersson-Wulcan currents of Cohen-Macaulay ideals, proving that there exists a natural current $R^\mathcal{J}_Z$ on a singular variety $Z$ such that $\ann R^\mathcal{J}_Z = \mathcal{J}$, and giving an analytic proof of a theorem of Hickel related to the Jacobian determinant of a holomorphic mapping by means of residue currents.

Author

Richard Lärkäng

University of Gothenburg

Chalmers, Mathematical Sciences, Mathematics

Subject Categories (SSIF 2011)

Mathematics

Mathematical Analysis

Roots

Basic sciences

More information

Created

10/7/2017