Characterization of CNT Enhanced Conductive Adhesives in Terms of Thermal Conductivity
Paper in proceedings, 2012

CNTs have excellent thermal, electrical and mechanical properties. They can be used in various ways. One researched field of application is CNT-polymer composites which combine common technologies with advanced materials. This paper will focus on the thermal property of CNT-Ag-filled adhesives and compares the new materials with conventional, electrical Ag-filled conductive adhesives. Several analytical methods, FTIR, Raman analysis, SEM and TEM have been carried out to examine the different surface conditions after physicval and chemical modification of CNTs. The thermal conductivities of composites containing different types of CNTs were investigated. The incorporation of CNTs into polymers resulted in enhancement of the thermal conductivity compared to Ag-filler. The increase of thermal conductivity with addition of CNT filler is obvious, especially for the purified CNT. The value of thermal conductivity is about two times higher than the Ag-filled conductive adhesive. However, improvement on thermal conductivity of the surface modified CNT-filled conductive adhesives is not so obvious. Since the thermal conduction in CNT is by phonon transfer, the nanometric size and the huge interface lead to strong phonon-scattering at the interface. Thus, a relatively low interfacial area, weak interfacial adhesion promotes the conduction of phonons and minimizes coupling losses. According to this, the non-treated MWCNTs seem to have the highest potential to improve the thermal conductivity of epoxies.

Author

Zhfei Zhang

Chalmers, Microtechnology and Nanoscience (MC2)

Lilei Ye

SHT Smart High-Tech

Akos Kukovecz

University of Szeged / Szegedi Tudományegyetem

Zoltan Konya

University of Szeged / Szegedi Tudományegyetem

Johan Bielecki

Chalmers, Applied Physics, Condensed Matter Physics

Johan Liu

Chalmers, Applied Physics, Electronics Material and Systems Laboratory

ECS Transactions

1938-5862 (ISSN) 1938-6737 (eISSN)

Vol. 44 1 1011-1017

Subject Categories

Other Electrical Engineering, Electronic Engineering, Information Engineering

DOI

10.1149/1.3694423

ISBN

978-1-60768-318-6

More information

Latest update

3/7/2018 7