Hepatic transcriptome profiling indicates differential mRNA expression of apoptosis and immune related genes in eelpout (Zoarces viviparus) caught at Göteborg harbor, Sweden
Journal article, 2013

The physiology and reproductive performance of eelpout (Zoarces viviparus) have been monitored along the Swedish coast for more than three decades. In this study, transcriptomic profiling was applied for the first time as an exploratory tool to search for new potential candidate biomarkers and to investigate possible stress responses in fish collected from a chronically polluted area. An oligonucleotide microarray with more than 15,000 sequences was used to assess differentially expressed hepatic mRNA levels in female eelpout collected from the contaminated area at Göteborg harbor compared to fish from a national reference site, Fjällbacka. Genes involved in apoptosis and DNA damage (e.g., SMAC/diablo homolog and DDIT4/DNA-damage-inducible protein transcript 4) had higher mRNA expression levels in eelpout from the harbor compared to the reference site, whereas mRNA expression of genes involved in the innate immune system (e.g., complement components and hepcidin) and protein transport/folding (e.g., signal recognition particle and protein disulfide-isomerase) were expressed at lower levels. Gene Ontology enrichment analysis revealed that genes involved biological processes associated with protein folding, immune responses and complement activation were differentially expressed in the harbor eelpout compared to the reference site. The differential mRNA expression of selected genes involved in apoptosis/DNA damage and in the innate immune system was verified by quantitative PCR, using the same fish in addition to eelpout captured four years later. Thus, our approach has identified new potential biomarkers of pollutant exposure and has generated hypotheses on disturbed physiological processes in eelpout. Despite a higher mRNA expression of genes related to apoptosis (e.g., diablo homolog) in eelpout captured in the harbor there were no significant differences in the number of TUNEL-positive apoptotic cells between sites. The mRNA level of genes involved in apoptosis/DNA damage and the status of the innate immune system in fish species captured in polluted environments should be studied in more detail to lay the groundwork for future biomonitoring studies.

fish

biomarkers

Microarray

exposure

Eelpout

Transcriptomics

flounder platichthys-flesus

coastal waters

north-sea

Chronic exposure

Pollution

dna-damage

responses

baltic sea

microarray

Author

Noomi Asker

University of Gothenburg

Erik Kristiansson

Chalmers, Mathematical Sciences, Mathematical Statistics

University of Gothenburg

Eva Albertsson

University of Gothenburg

D. G. Joakim Larsson

University of Gothenburg

Lars Förlin

University of Gothenburg

Aquatic Toxicology

0166-445X (ISSN) 1879-1514 (eISSN)

Vol. 130-131 58-67

Subject Categories

Biological Sciences

Environmental Sciences

DOI

10.1016/j.aquatox.2012.12.017

More information

Created

10/6/2017