Configurable Strategies for Work-stealing
Report, 2013
Work-stealing systems are typically oblivious to the nature of the tasks they
are scheduling. For instance, they do not know or take into account how long a
task will take to execute or how many subtasks it will spawn. Moreover, the
actual task execution order is typically determined by the underlying task
storage data structure, and cannot be changed. There are thus possibilities for
optimizing task parallel executions by providing information on specific tasks
and their preferred execution order to the scheduling system.
We introduce scheduling strategies to enable applications to dynamically
provide hints to the task-scheduling system on the nature of specific tasks.
Scheduling strategies can be used to independently control both local task
execution order as well as steal order. In contrast to conventional scheduling
policies that are normally global in scope, strategies allow the scheduler to
apply optimizations on individual tasks. This flexibility greatly improves
composability as it allows the scheduler to apply different, specific
scheduling choices for different parts of applications simultaneously. We
present a number of benchmarks that highlight diverse, beneficial effects that
can be achieved with scheduling strategies. Some benchmarks (branch-and-bound,
single-source shortest path) show that prioritization of tasks can reduce the
total amount of work compared to standard work-stealing execution order. For
other benchmarks (triangle strip generation) qualitatively better results can
be achieved in shorter time. Other optimizations, such as dynamic merging of
tasks or stealing of half the work, instead of half the tasks, are also shown
to improve performance. Composability is demonstrated by examples that combine
different strategies, both within the same kernel (prefix sum) as well as when
scheduling multiple kernels (prefix sum and unbalanced tree search).