An Approach for Self Evolving Neural Network Based Algorithm for Fault Prognosis in Wind Turbine
Paper in proceeding, 2013

In recent years Supervisory Control and Data Acquisition (SCADA) system has been used to monitor the condition of wind turbine components. SCADA being an integral part of wind turbines comes at no extra cost and measures an array of signals. This paper proposes to use artificial neural networks (ANN) algorithm for analysis of SCADA data for condition monitoring of components. The first step to build an ANN model is to create the training data set. Here an automated process to decide the training data set has been presented. The approach reduces the number of samples in the training data set compared to the conventional method of hand picking the data set. Further the approach describes how the ANN model could be kept in tune with the changes in the operating conditions of the wind turbine by updating the ANN model. The fault prognosis obtained from the model can be used to optimize the maintenance scheduling activity.

electricity generation.

condition monitoring

SCADA system

predictive maintenance

Artificial neural networks

Author

Pramod Bangalore

Swedish Wind Power Technology Center (SWPTC)

Chalmers, Energy and Environment, Electric Power Engineering

Lina Bertling

Chalmers, Energy and Environment, Electric Power Engineering

IEEE Grenoble Conference PowerTech, POWERTECH 2013; Grenoble; France

(article no 6652218)-
9781467356695 (ISBN)

Areas of Advance

Energy

Subject Categories

Electrical Engineering, Electronic Engineering, Information Engineering

Other Electrical Engineering, Electronic Engineering, Information Engineering

DOI

10.1109/PTC.2013.6652218

ISBN

9781467356695

More information

Latest update

11/5/2018