The "Sausage" and "Toothbrush" clusters of galaxies and the prospects of LOFAR observations of clusters of galaxies
Journal article, 2013

LOFAR, the Low Frequency Radio Array, is a new pan-European radio telescope that is almost fully operational. One of its main drivers is to make deep images of the low frequency radio sky. To be able to do this a number of challenges need to be addressed. These include the high data rates, removal of radio frequency interference, calibration of the beams and correcting for the corrupting influence of the ionosphere. One of the key science goals is to study merger shocks, particle acceleration mechanisms and the structure of magnetic fields in nearby and distant merging clusters. Recent studies with the GMRT and WSRT radio telescopes of the "Sausage" and the "Toothbrush" clusters have given a very good demonstration of the power of radio observations to study merging clusters. Recently we discovered that both clusters contain relic and halo sources, large diffuse regions of radio emission not associated with individual galaxies. The 2 Mpc northern relic in the Sausage cluster displays highly aligned magnetic fields and and exhibits a strong spectral index gradient that is a consequence of cooling of the synchrotron emitting particles in the post-shock region. We have argued that these observations provide strong evidence that shocks in merging clusters are capable of accelerating particles. For the Toothbrush cluster we observe a puzzling linear relic that extends over 2 Mpc. The proposed scenario is that a triple-merger can lead to such a structure. With LOFAR's sensitivity it will not only be possible to trace much weaker shocks, but also to study those shocks due to merging clusters up to redshifts of at least one. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1RXS J0603.3+4214)

J2242.8+5301

galaxies: clusters: individual(CIZA

ciza j2242.8+5301

mergers

galaxies: clusters: general

telescopes

calibration

Author

H. Rottgering

Leiden University

R. van Weeren

Smithsonian Astrophysical Observatory

M. Brüggen

University of Hamburg

J. Croston

University of Southampton

M. Hoeft

Thüringer Landessternwarte Tautenburg

G. Ogrean

University of Hamburg

P. D. Barthel

University of Groningen

P. Best

Royal Observatory

A. Bonafede

University of Hamburg

G. Brunetti

Istituto nazionale di astrofisica (INAF)

R. Cassano

Istituto nazionale di astrofisica (INAF)

K. Chyzy

Jagiellonian University in Kraków

John Conway

Chalmers, Earth and Space Sciences, Onsala Space Observatory

F. De Gasperin

University of Hamburg

C. Ferrari

Université Nice Sophia Antipolis (UNS)

G. Heald

Netherlands Institute for Radio Astronomy (ASTRON)

N. Jackson

University of Manchester

M.J. Jarvis

University of the Western Cape

University of Oxford

M. Lehnert

Observatoire de Paris-Meudon

G. Macario

Université Nice Sophia Antipolis (UNS)

G. Miley

Leiden University

E. Orru

Netherlands Institute for Radio Astronomy (ASTRON)

R. Pizzo

Netherlands Institute for Radio Astronomy (ASTRON)

D. Rafferty

Leiden University

A. Stroe

Leiden University

C. Tasse

Rhodes University

S. van der Tol

Leiden University

G. White

STFC Rutherford Appleton Laboratory

Open University

M. Wise

Netherlands Institute for Radio Astronomy (ASTRON)

Astronomische Nachrichten

0004-6337 (ISSN) 1521-3994 (eISSN)

Vol. 334 4-5 333-337

Subject Categories

Astronomy, Astrophysics and Cosmology

DOI

10.1002/asna.201211847

More information

Latest update

9/15/2023