An Industrially Validated Method for Weld Load Balancing in Multi Station Sheet Metal Assembly Lines
Journal article, 2014

Sheet metal assembly is investment intense. Therefore, the equipment needs to be efficiently utilized. The balancing of welds has a significant influence on achievable production rate and equipment utilization. Robot line balancing is a complex problem, where each weld is to be assigned to a specific station and robot, such that line cycle time is minimized. Industrial robot line balancing has been manually conducted in computer aided engineering (CAE)-tools based on experience and trial and error rather than mathematical methods. However, recently an automatic method for robot line balancing was proposed by the authors. To reduce robot coordination cycle time losses, this method requires identical reach ability of all line stations. This limits applicability considerably since in most industrial lines, reach ability differs over the stations to further line reach ability and flexibility. Therefore, in this work we propose a novel generalized simulation-based method for automatic robot line balancing that allows any robot positioning. It reduces the need for robot coordination significantly by spatially separating the robot weld work loads. The proposed method is furthermore successfully demonstrated on automotive stud welding lines, with line cycle times lower than that of the corresponding running production programs. Moreover, algorithm central processing unit (CPU)-times are mere fractions of the lead times of existing CAE-tools.

automatic path planning

TRAVELING SALESMAN PROBLEM

OPTIMIZATION

welding and robot coordination

spot

welding sequence

line load balancing

Author

Johan Segeborn

Volvo Cars

Daniel Segerdahl

Fraunhofer-Chalmers Centre

F. Ekstedt

Fraunhofer-Chalmers Centre

Johan Carlson

Fraunhofer-Chalmers Centre

M. Andersson

Volvo Cars

A. Carlsson

Volvo Cars

Rikard Söderberg

Chalmers, Product and Production Development, Product Development

Journal of Manufacturing Science and Engineering, Transactions of the ASME

1087-1357 (ISSN) 15288935 (eISSN)

Vol. 136 1 7- 011002

Subject Categories (SSIF 2011)

Mechanical Engineering

Areas of Advance

Production

DOI

10.1115/1.4025393

More information

Latest update

4/5/2022 6