A graph-theoretic approach on optimizing informed-node selection in multi-agent tracking control
Journal article, 2014

A graph optimization problem for a multi-agent leader follower problem is considered. In a multi-agent system with n followers and one leader, each agent's goal is to track the leader using the information obtained from its neighbors. The neighborhood relationship is defined by a directed communication graph where k agents, designated as informed agents, can become neighbors of the leader. This paper establishes that, for any given strongly connected communication graph with k informed agents, all agents will converge to the leader. In addition, an upper bound and a lower bound of the convergence rate are obtained. These bounds are shown to explicitly depend on the maximal distance from the leader to the followers. The dependence between this distance and the exact convergence rate is verified by empirical studies. Then we show that minimizing the maximal distance problem is a metric k-center problem in classical combinatorial optimization studies, which can be approximately solved. Numerical examples are given to illustrate the properties of the approximate solutions. (C) 2013 Elsevier B.V. All rights reserved.

COMMUNITY

optimization

COORDINATION

Multi-agent systems

Leader-follower models

NETWORKS

CONTROLLABILITY

CONSENSUS

Structure

SYSTEMS

ALGORITHMS

Convergence rate

AGENTS

TOPOLOGY

LEADER

Author

G. D. Shi

Royal Institute of Technology (KTH)

Kin Cheong Sou

University of Gothenburg

Chalmers, Mathematical Sciences, Mathematics

H. Sandberg

Royal Institute of Technology (KTH)

K. H. Johansson

Royal Institute of Technology (KTH)

Physica D: Nonlinear Phenomena

0167-2789 (ISSN)

Vol. 267 104-111

Subject Categories

Mathematics

DOI

10.1016/j.physd.2013.07.014

More information

Latest update

2/26/2018