Improved Initialization for Nonlinear State-Space Modeling
Journal article, 2014

This paper discusses a novel initialization algorithm for the estimation of nonlinear state-space models. Good initial values for the model parameters are obtained by identifying separately the linear dynamics and the nonlinear terms in the model. In particular, the nonlinear dynamic problem is transformed into an approximate static formulation, and simple regression methods are applied to obtain the solution in a fast and efficient way. The proposed method is validated by means of two measurement examples: the Wiener-Hammerstein benchmark problem, and the identification of a crystal detector.

nonlinear modeling

Multilayer perceptrons

state-space models

system identification

nonlinear dynamical systems

Author

A. Marconato

Vrije Universiteit Brussel (VUB)

Jonas Sjöberg

Chalmers, Signals and Systems, Systems and control

J. Suykens

KU Leuven

J. Schoukens

Vrije Universiteit Brussel (VUB)

IEEE Transactions on Instrumentation and Measurement

0018-9456 (ISSN) 1557-9662 (eISSN)

Vol. 63 4 972-980 6626669

Subject Categories

Control Engineering

Signal Processing

DOI

10.1109/TIM.2013.2283553

More information

Latest update

4/5/2022 6