A transient in situ infrared spectroscopy study on methane oxidation over supported Pt catalysts
Journal article, 2014

Catalysts with platinum dispersed on alumina, ceria and mixed alumina-ceria have been prepared by incipient wetness impreg- nation, characterized with transmission electron microscopy and X-ray diffraction, and evaluated for total oxidation of methane under both stationary and transient gas compositions (oxygen pulsing). Further, in situ diffuse reflectance Fourier transformed infrared spectroscopy has been used to monitor the evolution of surface species during precise transient gas composition changes using high-speed gas switching valves. The results show that platinum interacts sufficiently strong with all the supports so as to form small platinum particles. The smallest sizes are observed for the Pt/Ce sample. The alumina con- taining samples show, in contrast to the Pt/Ce sample, a decreased methane conversion with the increasing oxygen concentration and a clear kinetic bistability between increasing and decreasing oxygen concentrations. The bistable kinetics is likely connected to oxidation and reduction of platinum occurring at different stoichiometric gas mixtures depending on the history of the system, for which an oxidation of the platinum particles effectively inhibits the dissociative adsorption of methane leading to low reaction rate. It is shown for the alumina containing samples that the adverse effects of oxygen excess can be circumvented by the use of periodic operation so that the the average methane conversion is improved. Further, Pt/Ce seems to exhibit additional active sites at the platinum-ceria interface explaining the generally higher conversion of methane for this sample.

Author

Sheedeh Fouladvand

Chalmers, Chemical and Biological Engineering, Applied Surface Chemistry

Competence Centre for Catalysis (KCK)

Magnus Skoglundh

Chalmers, Chemical and Biological Engineering, Applied Surface Chemistry

Competence Centre for Catalysis (KCK)

Per-Anders Carlsson

Chalmers, Chemical and Biological Engineering, Applied Surface Chemistry

Competence Centre for Catalysis (KCK)

Catalysis Science and Technology

2044-4753 (ISSN) 2044-4761 (eISSN)

Vol. 4 10 3463-3473

Catalysts for demanding environments

Swedish Foundation for Strategic Research (SSF) (RMA08-0085), 2009-07-01 -- 2013-06-30.

Driving Forces

Sustainable development

Areas of Advance

Nanoscience and Nanotechnology

Transport

Energy

Materials Science

Subject Categories (SSIF 2011)

Physical Chemistry

Chemical Process Engineering

Materials Chemistry

Roots

Basic sciences

Infrastructure

Chalmers Materials Analysis Laboratory

DOI

10.1039/C4CY00486H

More information

Latest update

2/20/2019