Symplectic integrators for spin systems
Journal article, 2014

We present a symplectic integrator, based on the implicit midpoint method, for classical spin systems where each spin is a unit vector in R-3. Unlike splittingmethods, it is defined for all Hamiltonians and is O(3)-equivariant, i.e., coordinate-independent. It is a rare example of a generating function for symplectic maps of a noncanonical phase space. It yields a new integrable discretization of the spinning top.

Author

R. I. McLachlan

Klas Modin

Chalmers, Mathematical Sciences, Mathematics

University of Gothenburg

Olivier Verdier

Physical Review E

24700045 (ISSN) 24700053 (eISSN)

Vol. 89 6 artikel nr 061301-

Subject Categories

Other Physics Topics

DOI

10.1103/PhysRevE.89.061301

More information

Created

10/7/2017