Symplectic integrators for spin systems
Artikel i vetenskaplig tidskrift, 2014

We present a symplectic integrator, based on the implicit midpoint method, for classical spin systems where each spin is a unit vector in R-3. Unlike splittingmethods, it is defined for all Hamiltonians and is O(3)-equivariant, i.e., coordinate-independent. It is a rare example of a generating function for symplectic maps of a noncanonical phase space. It yields a new integrable discretization of the spinning top.


R. I. McLachlan

Klas Modin

Chalmers, Matematiska vetenskaper, Matematik

Göteborgs universitet

Olivier Verdier

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics

1539-3755 (ISSN)

Vol. 89 artikel nr 061301-


Annan fysik