Collinear, two-color optical Kerr effect shutter for ultrafast time-resolved imaging
Journal article, 2014

Imaging with ultrashort exposure times is generally achieved with a crossed-beam geometry. In the usual arrangement, an off-axis gating pulse induces birefringence in a medium exhibiting a strong Kerr response (commonly carbon disulfide) which is followed by a polarizer aligned to fully attenuate the on-axis imaging beam. By properly timing the gate pulse, imaging light experiences a polarization change allowing time-dependent transmission through the polarizer to form an ultrashort image. The crossed-beam system is effective in generating short gate times, however, signal transmission through the system is complicated by the crossing angle of the gate and imaging beams. This work presents a robust ultrafast time-gated imaging scheme based on a combination of type-I frequency doubling and a collinear optical arrangement in carbon disulfide. We discuss spatial effects arising from crossed-beam Kerr gating, and examine the imaging spatial resolution and transmission timing affected by collinear activation of the Kerr medium, which eliminates crossing angle spatial effects and produces gate times on the order of 1 ps. In addition, the collinear, two-color system is applied to image structure in an optical fiber and a gasoline fuel spray, in order to demonstrate image formation utilizing ballistic or refracted light, selected on the basis of its transmission time. (C) 2014 Optical Society of America

Optics

SIMULATION

GATE

LASER-LIGHT SCATTERING

MEDIA

Author

H. Purwar

INSA Rouen

S. Idlahcen

INSA Rouen

C. Rozé

INSA Rouen

David Sedarsky

Chalmers, Applied Mechanics, Combustion and Propulsion Systems

J.B. Blaisot

INSA Rouen

Optics Express

1094-4087 (ISSN) 10944087 (eISSN)

Vol. 22 13 15778-15790

Subject Categories

Atom and Molecular Physics and Optics

DOI

10.1364/oe.22.015778

More information

Created

10/7/2017