Power Scaling of Uplink Massive MIMO Systems With Arbitrary-Rank Channel Means
Journal article, 2014

This paper investigates the uplink achievable rates of massive multiple-input multiple-output (MIMO) antenna systems in Ricean fading channels, using maximal-ratio combining (MRC) and zero-forcing (ZF) receivers, assuming perfect and imperfect channel state information (CSI). In contrast to previous relevant works, the fast fading MIMO channel matrix is assumed to have an arbitrary-rank deterministic component as well as a Rayleigh-distributed random component. We derive tractable expressions for the achievable uplink rate in the large-antenna limit, along with approximating results that hold for any finite number of antennas. Based on these analytical results, we obtain the scaling law that the users' transmit power should satisfy, while maintaining a desirable quality of service. In particular, it is found that regardless of the Ricean K-factor, in the case of perfect CSI, the approximations converge to the same constant value as the exact results, as the number of base station antennas,, grows large, while the transmit power of each user can be scaled down proportionally to. If CSI is estimated with uncertainty, the same result holds true but only when the Ricean K-factor is non-zero. Otherwise, if the channel experiences Rayleigh fading, we can only cut the transmit power of each user proportionally to 1 root M. In addition, we show that with an increasing Ricean K-factor, the uplink rates will converge to fixed values for both MRC and ZF receivers.

FEEDBACK

uplink rates

Ricean fading channels

ARCHITECTURE

MULTIUSER MIMO

ANTENNAS

Massive MIMO

CAPACITY

Author

Q. Zhang

Nanjing University of Posts and Telecommunications

S. Jin

Southeast University

K. K. Wong

University College London (UCL)

H. B. Zhu

Nanjing University of Posts and Telecommunications

Michail Matthaiou

Chalmers, Signals and Systems, Signal Processing and Biomedical Engineering

IEEE Journal on Selected Topics in Signal Processing

1932-4553 (ISSN) 19410484 (eISSN)

Vol. 8 5 966-981 6816003

Subject Categories

Telecommunications

DOI

10.1109/JSTSP.2014.2324534

More information

Latest update

4/5/2022 6