I vår vardag möter vi många typer av material vars funktion är kopplad till deras växelverkan med vatten. Ett exempel är pappersprodukter som ska kunna absorbera och transportera vätska snabbt och effektivt; ett annat är läkemedel i tablettform, där frisättningen av den aktiva ingrediensen bestäms av hur formuleringen löses upp i kontakt med vatten i kroppen. Även i våra celler är vattentransport viktigt, då många kritiska funktioner kräver att cellens vatteninnehåll kan regleras med hjälp av cellmembranets genomsläpplighet. Alla dessa egenskaper är starkt beroende av materialens mikrostruktur. Hos mjuka material vars struktur förändras genom kontakt med vatten blir förhållandet mellan struktur och egenskaper komplext. Detta arbete syftar till att skapa nya experimentella metoder som kan öka förståelsen genom att visualisera materialens växelverkan med vatten. Vi har utvecklat en provhållare som kan användas inuti ett elektronmikroskop och som möjliggör dynamiska experiment under avbildning. Detta ger information om mikrostruktur och egenskaper på liten skala samtidigt. Tekniken är flexibel och kan användas för prover med olika geometri. Med hjälp av en känslig sensor kopplad till utrustningen kan man även göra noggranna mätningar av svällning i en fuktig miljö. Vi har använt tekniken för att studera olika material och visat att den kan ge ny och viktig information som bidrar till utvecklingen av framtida förbättrade material med nya funktioner.
Everyday, we surround ourselves with functional materials whose performance depends on the interaction with water. For example, many paper products rely on fast and efficient water absorption and transport, and the release of drugs from oral pharmaceuticals is governed by the swelling and dissolution of the formulation by water in the body. Furthermore, living cells depend crucially on the water transport properties of the cell membrane, which enable regulation of the cell volume. These properties are all strongly influenced by the materials’ microstructure. For soft materials whose structure changes through contact with water, the relationships between structure and properties are complex. The aim of this work is to create new experimental methods that can increase the understanding of these relationships by visualising the interaction between materials and water. We have developed a sample stage that can be used inside an electron microscope to enable dynamic experiments while imaging. This provides simultaneous information about microstructure and properties at small length scales. The technique is flexible and can be used for samples with different geometry. Coupled with a sensitive probe, the setup can also be used to measure swelling in a humid environment with high accuracy. We have used the technique to study different materials and shown that it can provide important new information contributing to the development of future materials with improved functionality.