A shell element formulation for the simulation of propagating delamination and through-thickness cracks
Paper in proceeding, 2014

In this contribution, we propose an enhanced shell element formulation for mesh independent FE simulation of through-thickness and multiple delamination crackp ropagation in orthotropic laminates, cf. Figure 1 for an illustration of the possibilities of using this shell element (multiple delaminations). The ambition is to offer a finite element tool to be used for larger component simulations, without having to resort to explicit resolution of each laminae in the laminated structure by three dimensional solid elements or stacked shell elements. The formulation involves three different types of displacement enrichments to make sure that each delaminated subsection which is also cut by a through thickness crack can be individually represented without (unphysical) kinematical couplings to the surrounding structure in the laminate. So far, the proposed modelling framework has been validated against pure deformation modes, in terms of either multiple delaminations or a through-thickness crack.

Shell elements

XFEM

Multiple delaminations

Through-thickness cracks

Author

Jim Brouzoulis

Chalmers, Applied Mechanics, Material and Computational Mechanics

Martin Fagerström

Chalmers, Applied Mechanics, Material and Computational Mechanics

Erik Svenning

Chalmers, Applied Mechanics, Material and Computational Mechanics

Proceedings of 16th European Conference on Composite Materials - ECCM16

(8p)-

Modelling And Testing for Improved Safety of key composite StructurEs inalternatively powered vehicles (MATISSE)

European Commission (EC) (EC/FP7/314182), 2012-10-01 -- 2015-09-30.

Subject Categories (SSIF 2011)

Mechanical Engineering

Applied Mechanics

Areas of Advance

Transport

Materials Science

More information

Created

10/7/2017