Detection of peptide-based nanoparticles in blood plasma by ELISA
Journal article, 2015

Aims: The aim of the current study was to develop a method to detect peptide-linked nanoparticles in blood plasma. Materials & Methods: A convenient enzyme linked immunosorbent assay (ELISA) was developed for the detection of peptides functionalized with biotin and fluorescein groups. As a proof of principle, polymerized pentafluorophenyl methacrylate nanoparticles linked to biotin-carboxyfluorescein labeled peptides were intravenously injected in Wistar rats. Serial blood plasma samples were analyzed by ELISA and by liquid chromatography mass spectrometry (LC/MS) technology. Results: The ELISA based method for the detection of FITC labeled peptides had a detection limit of 1 ng/mL. We were able to accurately measure peptides bound to pentafluorophenyl meth-acrylate nanoparticles in blood plasma of rats, and similar results were obtained by LC/MS. Conclusions: We detected FITC-labeled peptides on pentafluorophenyl methacrylate nanoparticles after injection in vivo. This method can be extended to detect nanoparticles with different chemical compositions.

Author

G.H. Bode

Maastricht University

K.E. Pickl

Joanneum Research Forschungsgesellschaft mbH

M. Sanchez-Purrà

Chemical Institute of Sarrià

B. Albaiges

Chemical Institute of Sarrià

S. Borrós

Chemical Institute of Sarrià

University Ramon Llull

A.J.G. Pötgens

AplaGen GmbH

C. Schmitz

Ludwig Maximilian University of Munich (LMU)

F.M. Sinner

Joanneum Research Forschungsgesellschaft mbH

Medical University of Graz

M. Losen

Maastricht University

H.W.M. Steinbusch

Maastricht University

H.G. Frank

AplaGen GmbH

Ludwig Maximilian University of Munich (LMU)

P. Martinez-Martinez

Maastricht University

K. Wagemann

Society for Chemical Engineering and Biotechnology

H.A. Klok

Swiss Federal Institute of Technology in Lausanne (EPFL)

R.E. Unger

Johannes Gutenberg University Mainz

T. Pieber

Medical University of Graz

A. Cesàro

University of Trieste

J. F. J. Engbersen

University of Twente

Bengt Herbert Kasemo

Chalmers, Applied Physics, Chemical Physics

M. Moeller

Deutsches Wollforschungsinstitut

R. Korenstein

Tel Aviv University

C. Grandfils

University of Liège

A. Bernkop-Schnuerch

University of Innsbruck

C. Kiparissides

Aristotle University of Thessaloniki

S. Slomkowski

Polish Academy of Sciences

P. Venturini

National Institute of Chemistry

C.M. Paleos

National Center for Scientific Research “Demokritos”

B. Podobnik

Lek Pharmaceuticals

P. Borm

Diagnostics BV

MagnaMedics Diagnostics BV

E.C.A. Van Winden

J. Groll

Deutsches Wollforschungsinstitut

B. Zassler

ThioMatrix GmbH

G. Gregoriadis

Lipoxen Plc

P.K. Nielsen

Novo Nordisk

A. Elouahabi

GlaxoSmithKline

PLoS ONE

1932-6203 (ISSN) 19326203 (eISSN)

Vol. 10 5 Art. no. e0126136- e0126136

Subject Categories

Analytical Chemistry

Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)

DOI

10.1371/journal.pone.0126136

More information

Latest update

12/30/2021