Impact of Residual Transmit RF Impairments on Training-Based MIMO Systems
Journal article, 2015

Radio-frequency (RF) impairments, which intimately exist in wireless communication systems, can severely limit the performance of multiple-input-multiple-output (MIMO) systems. Although we can resort to compensation schemes to mitigate some of these impairments, a certain amount of residual impairments always persists. In this paper, we consider a training-based point-to-point MIMO system with residual transmit RF impairments (RTRI) using spatial multiplexing transmission. Specifically, we derive a new linear channel estimator for the proposed model, and show that RTRI create an estimation error floor in the high signal-to-noise ratio (SNR) regime. Moreover, we derive closed-form expressions for the signal-to-noise-plus-interference ratio (SINR) distributions, along with analytical expressions for the ergodic achievable rates of zero-forcing, maximum ratio combining, and minimum mean-squared error receivers, respectively. In addition, we optimize the ergodic achievable rates with respect to the training sequence length and demonstrate that finite dimensional systems with RTRI generally require more training at high SNRs than those with ideal hardware. Finally, we extend our analysis to large-scale MIMO configurations, and derive deterministic equivalents of the ergodic achievable rates. It is shown that, by deploying large receive antenna arrays, the extra training requirements due to RTRI can be eliminated. In fact, with a sufficiently large number of receive antennas, systems with RTRI may even need less training than systems with ideal hardware.

training-based channel estimation

large-scale MIMO

Hardware impairments

random matrix theory

pilot optimization

Author

Xinlin Zhang

Chalmers, Signals and Systems, Signal Processing and Biomedical Engineering

Michail Matthaiou

Chalmers, Signals and Systems, Signal Processing and Biomedical Engineering

Mikael Coldrey

Ericsson Research AB

E. Bjornson

Linköping University

IEEE Transactions on Communications

0090-6778 (ISSN) 15580857 (eISSN)

Vol. 63 8 2899-2911 7106472

Subject Categories

Telecommunications

DOI

10.1109/tcomm.2015.2432761

More information

Latest update

4/5/2022 6