Induced morphological changes on vicinal MgO (100) subjected to high-temperature annealing: Step formation and surface stability
Journal article, 2015

Highly regular step and terrace structures have been produced on surfaces of single crystalline MgO, miscut from the low-index (001) plane, upon annealing in air. Here, the evolution of the surface morphology of such surfaces is investigated. We demonstrate that the periodicity of these structures can be widely tuned in the submicron range by controlling the annealing conditions. Surface faceting resulted from annealing in the temperature range 1100-1580 °C. The surfaces were characterized by atomic force microscope, X-ray diffraction, transmission electron microscope, and X-ray photoelectron spectroscopy to assess the role of contamination, temperature, and miscut angle in the final morphology. The presence of Al contamination in the post-annealed samples was found to be essential for the formation of the step and terrace structure. The stability of the resultant structures when exposed to ambient conditions is discussed. The cause of the apparent destruction of the surface morphology upon long-term atmospheric exposure has been identified, and a method to recover the faceted morphology is proposed. Overall, the study further facilitates the growth of nanostructures on such faceted surfaces.

vicinal surface

magnesium oxide

surface morphology

annealing

faceting

Author

A. Syrlybekov

Trinity College Dublin

Nazarbayev University

E. Arca

Trinity College Dublin

Ruggero Verre

Chalmers, Applied Physics, Bionanophotonics

C. O Coileain

Trinity College Dublin

O. Toktarbaiuly

Trinity College Dublin

A. Khalid

Trinity College Dublin

H. Zhang

Trinity College Dublin

I. V. Shvets

Trinity College Dublin

Surface and Interface Analysis

0142-2421 (ISSN) 1096-9918 (eISSN)

Vol. 47 10 969-977

Subject Categories

Manufacturing, Surface and Joining Technology

DOI

10.1002/sia.5805

More information

Latest update

7/4/2018 9