Amyloid-beta peptide-induced cytotoxicity and mitochondrial dysfunction in yeast
Journal article, 2015
Alzheimer's disease (AD) is the most common neurodegenerative disease, characterized by deposits of amyloid-beta(A beta) peptides. However, the underlying molecular mechanisms of neuron cell dysfunction and cell death in AD still remain poorly understood. Yeast Saccharomyces cerevisiae shares many conserved biological processes with all eukaryotic cells, including human neurons. Thanks to relatively simple and quick genetic and environmental manipulations, the large knowledge base and data collections, this organism has become a valuable tool to unravel fundamental intracellular mechanisms underlying neurodegeneration. In this study, we have used yeast as a model system to study the effects of intracellular A beta peptides and we found that cells constitutively producing native A beta directed to the secretory pathway exhibited a lower growth rate, lower biomass yield, lower respiratory rate, increased oxidative stress, hallmarks of mitochondrial dysfunction and ubiquitin-proteasome system dysfunction. These findings are relevant for better understanding the role of A beta in cell stress and cell damage.
mitochondria
yeast
ubiquitin-proteasome system
Amyloid-beta
Alzheimer's disease
oxidative stress