Synthesis of carbon nanotube films by thermal CVD in the presence of supported catalyst particles. Part II: the nanotube film
Magazine article, 2004

Carbon nanotube films have been grown at 750° and 900 °C by thermal chemical vapor deposition (CVD) with acetylene (C2H2) and hydrogen on silicon (0 0 2) wafers supporting preformed (Fe,Si)3O4 particles. The reduction of the (Fe,Si)3O4 particles during CVD at 750 °C was accompanied by a disintegration leading to the formation of a high density of smaller (predominantly 5–15 nm) iron silicide (α1-Fe2Si) particles that catalyzed the growth of a dense and aligned multi-wall carbon nanotube film. The tubes did not contain any inclusions apart from the catalytic particles present in the bottom part of the film, and it was concluded that the nanotubes grew via a “base-growth” mechanism. CVD at 900 °C resulted in a random growth of predominantly multi-wall carbon nanotubes. The film contained an increased number of amorphous carbon, or graphite, clusters containing particles that had been carbonized, the larger ones to cementite, θ-Fe3C. Nanotubes were observed to grow from some of these clusters. Multi-wall carbon nanotube tips contained after CVD at 900 °C encapsulated θ-Fe3C, or in a few cases α- or γ-Fe, particles.

Author

Yiming Yao

Chalmers, Department of Experimental Physics

Lena Falk

Chalmers, Department of Experimental Physics, Microscopy and Microanalysis

Raluca Elena Morjan

Chalmers, Department of Experimental Physics, Atomic Physics

O.A. Nerushev

Chalmers, Applied Physics

Eleanor E B Campbell

University of Gothenburg

Journal of Materials Science: Materials in Electronics

Vol. 15 9 583-594

Areas of Advance

Nanoscience and Nanotechnology

Materials Science

Subject Categories (SSIF 2011)

Other Materials Engineering

Other Electrical Engineering, Electronic Engineering, Information Engineering

More information

Created

10/7/2017