Baumgarte Stabilisation over the SO(3) Rotation Group for Control
Paper in proceeding, 2015

Representations of the SO(3) rotation group are crucial for airborne and aerospace applications. Euler angles is a popular representation in many applications, but yield models having singular dynamics. This issue is addressed via non-singular representations, operating in dimensions higher than 3. Unit quaternions and the Direction Cosine Matrix are the best known non-singular representations, and favoured in challenging aeronautic and aerospace applications. All non-singular representations yield invariants in the model dynamics, i.e. a set of nonlinear algebraic conditions that must be fulfilled by the model initial conditions, and that remain fulfilled over time. However, due to numerical integration errors, these conditions tend to become violated when using standard integrators, making the model inconsistent with the physical reality. This issue poses some challenges when non-singular representations are deployed in optimal control. In this paper, we propose a simple technique to address the issue for classical integration schemes, establish formally its properties, and illustrate it on the optimal control of a satellite.

Author

Sébastien Gros

Chalmers, Signals and Systems, Systems and control

Marion Zanon

University of Freiburg

Moritz Diehl

University of Freiburg

Proceedings of the IEEE Conference on Decision and Control

07431546 (ISSN) 25762370 (eISSN)

Vol. 54rd IEEE Conference on Decision and Control,CDC 2015 620-625
978-1-4799-7886-1 (ISBN)

Areas of Advance

Information and Communication Technology

Subject Categories

Computer and Information Science

Roots

Basic sciences

DOI

10.1109/CDC.2015.7402298

ISBN

978-1-4799-7886-1

More information

Latest update

7/11/2024