Greenhouse gas performance of heat and electricity from wood pellet value chains – based on pellets for the Swedish market
Journal article, 2015
Increased bioenergy demand has triggered a discussion on the sustainability of solid
biomass-based fuels and a system for sustainability criteria has been discussed within the EU.
This paper assesses the greenhouse gas (GHG) emissions for heat and electricity from selected
wood pellet value chains for the Swedish market and the associated potential emissions reduction in
relation to fossil fuels using a life cycle assessment (LCA) perspective, and in relation to the approach
described in recent EU policy developments. Nine different wood pellet value chains for heat and/
or power production in Sweden are assessed (including pellets from Sweden, Latvia, Russia, and
Canada). Selected assumptions are varied in a sensitivity analysis. The total factory-gate GHG emissions
at the conversion facility for the wood pellet value chains studied, range between 2 and 25 g
CO2-eq/MJ pellets with Swedish pellets at the lower end, and Russian pellets using natural gas for
drying the raw material at the higher end. Imported pellets from Latvia, Russia, and Canada that use
biomass for drying may also reach relatively low levels of GHG emissions. The potential GHG reduction
as compared to a certain fossil fuel default energy comparator is 64–98% for the electricity produced
in the pellet value chains studied and 77–99% for the heat produced. Thus, many wood pellet
value chains on the Swedish market will most likely be able to meet strict demands for sustainability
from a GHG perspective.
trade
wood pellets
greenhouse gases
bioenergy
life cycle assessment (LCA)
Sweden