The Role of Trehalose for the Stabilization of Proteins
Journal article, 2016

Understanding of how the stabilization mechanism of trehalose operates on biological molecules against different types of environmental stress could prove to gain great advancements in many different types of conservation techniques, such as cryopreservation or freeze-drying. Many theories exist that aim to explain why trehalose possesses an extraordinary ability to stabilize biomolecules. However, all of them just explain parts of its mechanism and a comprehensive picture is still lacking. In this study, we have used differential scanning calorimetry (DSC) and viscometry measurements to determine how the glass transition temperature T-g, the protein denaturation temperature T-den, and the dynamic viscosity depend on both the trehalose and the protein concentration in myoglobin-trehalose-water systems. The aim has been to determine whether these physical properties are related and to gain indirect structural insights from the limits of water crystallization at different concentration ratios. The results show that for systems without partial crystallization of water the addition of protein increases T-g, most likely due to the fact that the protein adsorbs water and thereby reduces. the water content in the trehalose-water matrix. Furthermore, these systems are generally decreasing in T-den, with an increasing protein concentration, and thereby also an increasing viscosity, showing that the dynamics of the trehalose-water matrix and the stability of the native structure of the protein are not necessarily coupled. We also infer, by analyzing the maximum amount of water for which ice formation is avoided, that the preferential hydration model is consistent with our experimental data.

Author

Christoffer Olsson

Chalmers, Physics, Condensed Matter Physics

Helen Jansson

Chalmers, Civil and Environmental Engineering, Building Technology

Jan Swenson

Chalmers, Physics, Condensed Matter Physics

Journal of Physical Chemistry B

1520-6106 (ISSN) 1520-5207 (eISSN)

Vol. 120 20 4723-4731

Subject Categories

Physical Chemistry

DOI

10.1021/acs.jpcb.6b02517

More information

Created

10/7/2017