"Owl' and "Lizard': patterns of head pose and eye pose in driver gaze classification
Journal article, 2016

Accurate, robust, inexpensive gaze tracking in the car can help keep a driver safe by facilitating the more effective study of how to improve (i) vehicle interfaces and (ii) the design of future advanced driver assistance systems. In this study, the authors estimate head pose and eye pose from monocular video using methods developed extensively in prior work and ask two new interesting questions. First, how much better can they classify driver gaze using head and eye pose versus just using head pose? Second, are there individual-specific gaze strategies that strongly correlate with how much gaze classification improves with the addition of eye pose information? The authors answer these questions by evaluating data drawn from an on-road study of 40 drivers. The main insight of the study is conveyed through the analogy of an owl' and lizard' which describes the degree to which the eyes and the head move when shifting gaze. When the head moves a lot (owl'), not much classification improvement is attained by estimating eye pose on top of head pose. On the other hand, when the head stays still and only the eyes move (lizard'), classification accuracy increases significantly from adding in eye pose. The authors characterise how that accuracy varies between people, gaze strategies, and gaze regions.

inexpensive gaze tracking

vehicle interfaces

image classification

pose estimation

driver information systems

video signal processing

Computer Science

gaze tracking

driver gaze classification

eye pose pattern estimation

head pose pattern estimation

Engineering

future advan

Author

L. Fridman

Massachusetts Institute of Technology (MIT)

J. Lee

Massachusetts Institute of Technology (MIT)

B. Reimer

Massachusetts Institute of Technology (MIT)

Trent Victor

Chalmers, Applied Mechanics, Vehicle Safety, Accident Prevention

SAFER, The Vehicle and Traffic Safety Centre

IET Computer Vision

1751-9632 (ISSN) 1751-9640 (eISSN)

Vol. 10 4 308-314

Subject Categories

Computer Vision and Robotics (Autonomous Systems)

DOI

10.1049/iet-cvi.2015.0296

More information

Latest update

7/23/2019