Planetary Radio Interferometry and Doppler Experiment (PRIDE) technique: A test case of the Mars Express Phobos fly-by
Journal article, 2016

The closest ever fly-by of the Martian moon Phobos, performed by the European Space Agency's Mars Express spacecraft, gives a unique opportunity to sharpen and test the Planetary Radio Interferometry and Doppler Experiments (PRIDE) technique in the interest of studying planet-satellite systems. Aims. The aim of this work is to demonstrate a technique of providing high precision positional and Doppler measurements of planetary spacecraft using the Mars Express spacecraft. The technique will be used in the framework of Planetary Radio Interferometry and Doppler Experiments in various planetary missions, in particular in fly-by mode. Methods. We advanced a novel approach to spacecraft data processing using the techniques of Doppler and phase-referenced very long baseline interferometry spacecraft tracking. Results. We achieved, on average, mHz precision (30 mu m/s at a 10 s integration time) for radial three-way Doppler estimates and sub-nanoradian precision for lateral position measurements, which in a linear measure (at a distance of 1.4 AU) corresponds to similar to 50 m.

vlbi

techniques: miscellaneous

techniques: interferometric

tracking

methods: data analysis

astrometry

Author

Dmitry Duev

Moscow State University

Joint Institute for VLBI in Europe (JIVE)

California Institute of Technology (Caltech)

Sergei Pogrebenko

Joint Institute for VLBI in Europe (JIVE)

G. Cimo

Joint Institute for VLBI in Europe (JIVE)

Netherlands Institute for Radio Astronomy (ASTRON)

G. M. Calves

Aalto University

Joint Institute for VLBI in Europe (JIVE)

T. M. B. Bahamon

Shanghai Astronomical Observatory

Delft University of Technology

Joint Institute for VLBI in Europe (JIVE)

L. I. Gurvits

Delft University of Technology

Joint Institute for VLBI in Europe (JIVE)

M. M. Kettenis

Joint Institute for VLBI in Europe (JIVE)

J. Kania

Carnegie Mellon University (CMU)

Joint Institute for VLBI in Europe (JIVE)

V. Tudose

Institute for Space Sciences, Bucharest

P. Rosenblatt

Royal Observatory of Belgium

J. C. Marty

CNES Centre National d'Etudes Spatiales

V. Lainey

IMCCE - Institut de Mecanique Celeste et de Calcul des Ephemerides

P. de Vicente

Yebes Observatory

J. Quick

Hartebeeshoek Radio Astronomy Observatory

M. Nickola

Hartebeeshoek Radio Astronomy Observatory

A. Neidhardt

Federal Agency for Cartography and Geodesy (BKG)

G. Kronschnabl

Federal Agency for Cartography and Geodesy (BKG)

C. Ploetz

Federal Agency for Cartography and Geodesy (BKG)

Rüdiger Haas

Chalmers, Earth and Space Sciences, Space Geodesy and Geodynamics

Chalmers, Earth and Space Sciences, Onsala Space Observatory

Michael Lindqvist

Chalmers, Earth and Space Sciences, Onsala Space Observatory

A. Orlati

Istituto nazionale di astrofisica (INAF)

A. V. Ipatov

Russian Academy of Sciences

M. A. Kharinov

Russian Academy of Sciences

A. G. Mikhailov

Russian Academy of Sciences

J. E. J. Lovell

University of Tasmania

J. N. McCallum

University of Tasmania

J. Stevens

Australia Telescope National Facility

S. A. Gulyaev

Auckland University of Technology

T. Natush

Auckland University of Technology

S. Weston

Auckland University of Technology

W. H. Wang

Shanghai Astronomical Observatory

B. Xia

Shanghai Astronomical Observatory

W. J. Yang

Chinese Academy of Sciences

L. F. Hao

Chinese Academy of Sciences

J. Kallunki

Aalto University

O. Witasse

European Space Agency (ESA)

Astronomy and Astrophysics

0004-6361 (ISSN) 1432-0746 (eISSN)

Vol. 593 A34 A34

Driving Forces

Sustainable development

Subject Categories

Astronomy, Astrophysics and Cosmology

Roots

Basic sciences

Infrastructure

Onsala Space Observatory

DOI

10.1051/0004-6361/201628869

More information

Latest update

4/4/2019 1