Broadcast coded slotted ALOHA: A finite frame length analysis
Journal article, 2017

We propose an uncoordinated medium access con- trol (MAC) protocol, called all-to-all broadcast coded slotted ALOHA (B-CSA) for reliable all-to-all broadcast with strict latency constraints. In B-CSA, each user acts as both transmitter and receiver in a half-duplex mode. The half-duplex mode gives rise to a double unequal error protection (DUEP) phenomenon: the more a user repeats its packet, the higher the probability that this packet is decoded by other users, but the lower the probability for this user to decode packets from others. We analyze the performance of B-CSA over the packet erasure channel for a finite frame length. In particular, we provide a general analysis of stopping sets for B-CSA and derive an analytical approximation of the performance in the error floor (EF) region, which captures the DUEP feature of B-CSA. Simulation results reveal that the proposed approximation predicts very well the performance of B-CSA in the EF region. Finally, we consider the application of B- CSA to vehicular communications and compare its performance with that of carrier sense multiple access (CSMA), the current MAC protocol in vehicular networks. The results show that B- CSA is able to support a much larger number of users than CSMA with the same reliability.

finite length analysis

packet loss rate

interference cancelation

error floor

random access

All-to-all broadcast

coded slotted ALOHA

Author

Mikhail Ivanov

Chalmers, Signals and Systems, Communication, Antennas and Optical Networks

Fredrik Brännström

Chalmers, Signals and Systems, Communication, Antennas and Optical Networks

Alexandre Graell i Amat

Chalmers, Signals and Systems, Communication, Antennas and Optical Networks

Petar Popovski

Aalborg University

IEEE Transactions on Communications

0090-6778 (ISSN) 15580857 (eISSN)

Vol. 65 2 651-662 7736044

Cooperative Situational Awareness for Wireless Networks (COOPNET)

European Commission (EC) (EC/FP7/258418), 2011-05-01 -- 2016-04-30.

MIMO-BICM: Fundamentals, Analysis, and Design

Swedish Research Council (VR) (2011-5950), 2012-01-01 -- 2015-12-31.

Signal Recovery: Compressed Sensing meets Coding Theory

Swedish Research Council (VR) (2011-5961), 2012-01-01 -- 2015-12-31.

Areas of Advance

Information and Communication Technology

Transport

Subject Categories

Telecommunications

Communication Systems

DOI

10.1109/TCOMM.2016.2625253

More information

Latest update

4/5/2022 7