Ventilation Flow Field Characteristics of a Hydro-Generator Model- An experimental and Numerical Study
Doctoral thesis, 2017

Hydro-generators are complex machines used to convert the mechanical energy of the water turbine into electrical energy. Electromagnetic and mechanical losses accompany this energy conversion process which will cause heat generation and temperature increase. Cooling systems are needed to remove this excess heat from hydro-generators. Cooling system should control temperature increase and its temporal and spatial uniformity. An efficient cooling and ventilation must be considered during the electro-mechanical design of a generator. Having a complete picture of the losses, the ventilation flow field characteristics and the temperatures inside a generator is essential for an optimal design of cooling system for it. \par The present work provides experimental and numerical tools essential for investigating ventilation flow attributes inside hydro-generators and also a comprehensive studies of flow based on these tools. An extensive knowledge of flow distribution inside the stator ventilation channels in different operational conditions and geometrical configurations are achieved. The obtained knowledge can be used for improvement in design of generator cooling system.  A hydro-generator model was designed and manufactured taking into consideration the needs of both the experimental and numerical methodologies. An inlet section is designed to deliver a uniform flow distribution into the machine and also to facilitate a direct and accurate measurement of the inlet flow rate. A CFD-based procedure is utilized for its design. The intake flow can either be supplied by a specifically designed radial fan connected to the rotor and co-rotating with that, or by an external centrifugal fan. Stators with three different ventilation channel geometrical configurations are used. Total pressure rake, 5-hole probe and hot-wire anemometer are used for taking measurements at stator ventilation channels outlets and generator inlet. Particle image velocimetry is carried out to reveal the flow field inside the ventilation channels.  The computational fluid dynamics simulations are performed using the FOAM-extend CFD toolbox. A block-structured mesh is generated using the ANSYS ICEM CFD mesh generator. The steady-state multiple frames of reference method is used for the numerical simulations. The frozen rotor and mixing plane approaches are used to handle the rotor-stator interaction. The flow is assumed axisymmetric, so just a section of generator model is simulated numerically. Periodic boundary conditions are imposed at the two sides of the computational section. Turbulences in the flow are modeled with Reynolds-averaged Navier-Stokes (RANS) formulation. The flow and pressure field in the generator model are analyzed in detail. The numerical and experimental results show a good agreement, which indicates the applicability of both methods. Another aspect of hydro-generator ventilation which is important for designers is the convective heat transfer coefficients. An alternative way to indirectly obtain the convective heat transfer coefficients is to conduct mass transfer experiments such as the naphthalene sublimation technique. In the present work this technique is evaluated for analysis of the local heat transfer distribution when a circular air jet impinges normal on a flat surface. The local sublimation rate from the naphthalene surface subjected to the air jet is measured and reduced to the heat transfer that would occur on the surface under analogous thermal conditions. The indirectly obtained local heat transfer distributions and its local Nusselt numbers are compared to the results of numerical simulations and other experiments. The results show that the naphthalene sublimation technique can be used to accurately estimate the local heat transfer coefficients.

Naphthalene Sublimation Technique

Hydro Power Generator

Ventilation

Experiment

CFD

Virtual Development Laboratory, Chalmers Tvärgata 4C
Opponent: Professor Oszkar Biro, Institute of Fundamentals and Theory in Electrical Engineering, Graz University of Technology, Austria.

Author

Hamed Jamshidi

Chalmers, Applied Mechanics, Fluid Dynamics

CFD-based design and analysis of the ventilation of an electric generator model, validated with experiments

International Journal of Fluid Machinery and Systems,;Vol. 8(2015)p. 113-123

Journal article

H. Jamshidi, H. Nilsson, and V. Chernoray. "The Effect of Inlet Flow Rate on the Air Distribution in Ventilation Channels of a Hydro Generator Model"

H. Jamshidi, H. Nilsson, and V. Chernoray. "Ventilation Air Flow Field Asymmetry and Unsteadiness in Stator Channels of a Generator Model"

H. Jamshidi, M. Liljemark, H. Nilsson, and V. Chernoray. "Assessment of Naphthalene Sublimation Technique in Jet Impingement Heat Transfer Characterization"

Subject Categories (SSIF 2011)

Mechanical Engineering

Energy Engineering

Fluid Mechanics and Acoustics

Driving Forces

Sustainable development

Areas of Advance

Energy

ISBN

978-91-7597-539-9

Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 4220

Publisher

Chalmers

Virtual Development Laboratory, Chalmers Tvärgata 4C

Opponent: Professor Oszkar Biro, Institute of Fundamentals and Theory in Electrical Engineering, Graz University of Technology, Austria.

More information

Created

2/6/2017 1