Global analysis of biosynthetic gene clusters reveals vast potential of secondary metabolite production in Penicillium species
Journal article, 2017

Filamentous fungi produce a wide range of bioactive compounds with important pharmaceutical applications, such as antibiotic penicillins and cholesterol-lowering statins. However, less attention has been paid to fungal secondary metabolites compared to those from bacteria. In this study, we sequenced the genomes of 9 Penicillium species and, together with 15 published genomes, we investigated the secondary metabolism of Penicillium and identified an immense, unexploited potential for producing secondary metabolites by this genus. A total of 1,317 putative biosynthetic gene clusters (BGCs) were identified, and polyketide synthase and non-ribosomal peptide synthetase based BGCs were grouped into gene cluster families and mapped to known pathways. The grouping of BGCs allowed us to study the evolutionary trajectory of pathways based on 6-methylsalicylic acid (6-MSA) synthases. Finally, we cross-referenced the predicted pathways with published data on the production of secondary metabolites and experimentally validated the production of antibiotic yanuthones in Penicillia and identified a previously undescribed compound from the yanuthone pathway. This study is the first genus-wide analysis of the genomic diversity of Penicillia and highlights the potential of these species as a source of new antibiotics and other pharmaceuticals.

Author

Jens Christian Froslev Nielsen

Chalmers, Biology and Biological Engineering, Systems and Synthetic Biology

S. Grijseels

Technical University of Denmark (DTU)

Sylvain Prigent

Chalmers, Biology and Biological Engineering, Systems and Synthetic Biology

Boyang Ji

Chalmers, Biology and Biological Engineering, Systems and Synthetic Biology

Jacques Dainat

Uppsala University

K. F. Nielsen

Technical University of Denmark (DTU)

J. C. Frisvad

Technical University of Denmark (DTU)

M. Workman

Technical University of Denmark (DTU)

Jens B Nielsen

Chalmers, Biology and Biological Engineering, Systems and Synthetic Biology

Nature Microbiology

2058-5276 (eISSN)

Vol. 2 6 17044

Subject Categories

Microbiology

DOI

10.1038/nmicrobiol.2017.44

More information

Latest update

4/5/2022 7