Functional screening of aldehyde decarbonylases for long-chain alkane production by Saccharomyces cerevisiae
Journal article, 2017

Background: Low catalytic activities of pathway enzymes are often a limitation when using microbial based chemical production. Recent studies indicated that the enzyme activity of aldehyde decarbonylase (AD) is a critical bottleneck for alkane biosynthesis in Saccharomyces cerevisiae. We therefore performed functional screening to identify efficient ADs that can improve alkane production by S. cerevisiae. Results: A comparative study of ADs originated from a plant, insects, and cyanobacteria were conducted in S. cerevisiae. As a result, expression of aldehyde deformylating oxygenases (ADOs), which are cyanobacterial ADs, from Synechococcus elongatus and Crocosphaera watsonii converted fatty aldehydes to corresponding Cn-1 alkanes and alkenes. The CwADO showed the highest alkane titer (0.13mg/L/OD600) and the lowest fatty alcohol production (0.55mg/L/OD600). However, no measurable alkanes and alkenes were detected in other AD expressed yeast strains. Dynamic expression of SeADO and CwADO under GAL promoters increased alkane production to 0.20mg/L/OD600 and no fatty alcohols, with even number chain lengths from C8 to C14, were detected in the cells. Conclusions: We demonstrated in vivo enzyme activities of ADs by displaying profiles of alkanes and fatty alcohols in S. cerevisiae. Among the AD enzymes evaluated, cyanobacteria ADOs were found to be suitable for alkane biosynthesis in S. cerevisiae. This work will be helpful to decide an AD candidate for alkane biosynthesis in S. cerevisiae and it will provide useful information for further investigation of AD enzymes with improved activities.

Biofuels

Metabolic engineering

Aldehyde decarbonylase

Saccharomyces cerevisiae

Alkane biosynthesis

Author

Min-Kyoung Kang

Chalmers, Biology and Biological Engineering

Yongjin Zhou

Chalmers, Biology and Biological Engineering, Systems and Synthetic Biology

Nicolaas Buijs

Chalmers, Biology and Biological Engineering, Systems and Synthetic Biology

Jens B Nielsen

Chalmers, Biology and Biological Engineering, Systems and Synthetic Biology

Microbial Cell Factories

14752859 (eISSN)

Vol. 16 1 Article number 74- 74

Driving Forces

Sustainable development

Areas of Advance

Building Futures (2010-2018)

Roots

Basic sciences

Subject Categories

Environmental Biotechnology

DOI

10.1186/s12934-017-0683-z

More information

Created

10/8/2017