Maximizing determinism in stream processing under latency constraints
Paper in proceeding, 2017

The problem of coping with the demands of determinism and meeting latency constraints is challenging in distributed data stream processing systems that have to process high volume data streams that arrive from different unsynchronized input sources. In order to deterministically process the streaming data, they need mechanisms that synchronize the order in which tuples are processed by the operators. On the other hand, achieving real-time response in such a system requires careful tradeoff between determinism and low latency performance. We build on a recently proposed approach to handle data exchange and synchronization in stream processing, namely ScaleGate, which comes with guarantees for determinism and an efficient lock-free implementation, enabling high scalability. Considering the challenge and trade-offs implied by real-time constraints, we propose a system which comprises (a) a novel data structure called Slack-ScaleGate (SSG), along with its algorithmic implementation; SSG enables us to guarantee the deterministic processing of tuples as long as they are able to meet their latency constraints, and (b) a method to dynamically tune the maximum amount of time that a tuple can wait in the SSG data-structure, relaxing the determinism guarantees when needed, in order to satisfy the latency constraints. Our detailed experimental evaluation using a traffic monitoring application deployed in the city of Dublin, illustrates the working and benefits of our approach.

Deterministic processing

Complex event processing

Stream processing

Author

N. Zacheilas

Athens University of Economics and Business

V. Kalogeraki

Athens University of Economics and Business

Ioannis Nikolakopoulos

Chalmers, Computer Science and Engineering (Chalmers), Networks and Systems (Chalmers)

Vincenzo Massimiliano Gulisano

Chalmers, Computer Science and Engineering (Chalmers), Networks and Systems (Chalmers)

Marina Papatriantafilou

Chalmers, Computer Science and Engineering (Chalmers), Networks and Systems (Chalmers)

Philippas Tsigas

Chalmers, Computer Science and Engineering (Chalmers), Networks and Systems (Chalmers)

DEBS 2017 - Proceedings of the 11th ACM International Conference on Distributed Event-Based Systems

112-123
978-145035065-5 (ISBN)

Subject Categories

Embedded Systems

DOI

10.1145/3093742.3093921

ISBN

978-145035065-5

More information

Latest update

6/8/2018 8