Simultaneous 183 GHz H2O maser and SiO observations towards evolved stars using APEX SEPIA Band 5
Journal article, 2017

Aims. The aim is to investigate the use of 183 GHz H2O masers for characterization of the physical conditions and mass loss process in the circumstellar envelopes of evolved stars. Methods. We used APEX SEPIA Band 5 (an ALMA Band 5 receiver on the APEX telescope) to observe the 183 GHz H2O line towards two red supergiant (RSG) and three asymptotic giant branch (AGB) stars. Simultaneously, we observed the J = 4-3 line for (SiO)-Si-28 nu = 0, 1, 2 and 3, and for (SiO)-Si-29 nu = 0 and 1. We compared the results with simulations and radiative transfer models for H2O and SiO, and examined data for the individual linear orthogonal polarizations. Results. We detected the 183 GHz H2O line towards all the stars with peak flux densities >100 Jy, including a new detection from VYCMa. Towards all five targets, the water line had indications of being caused by maser emission and had higher peak flux densities than for the SiO lines. The SiO lines appear to originate from both thermal and maser processes. Comparison with simulations and models indicate that 183 GHz maser emission is likely to extend to greater radii in the circumstellar envelopes than SiO maser emission and to similar or greater radii than water masers at 22, 321 and 325 GHz. We speculate that a prominent blue-shifted feature in the WHya 183 GHz spectrum is amplifying the stellar continuum, and is located at a similar distance from the star as mainline OH maser emission. We note that the coupling of an SiO maser model to a hydrodynamical pulsating model of an AGB star yields qualitatively similar simulated results to the observations. From a comparison of the individual polarizations, we find that the SiO maser linear polarization fraction of several features exceeds the maximum fraction allowed under standard maser assumptions and requires strong anisotropic pumping of the maser transition and strongly saturated maser emission. The low polarization fraction of the H2O maser however, fits with the expectation for a non-saturated maser. Conclusions. 183 GHz H2O masers can provide strong probes of the mass loss process of evolved stars. Higher angular resolution observations of this line using ALMA Band 5 will enable detailed investigation of the emission location in circumstellar envelopes and can also provide information on magnetic field strength and structure.

AGB Stars

Red Supergiant Stars

Giant Branch Stars

masers

supergiants

Water-Vapor

Proper Motions

Mira Variables

VLBI Astrometry

stars: AGB and post-AGB

Magnetic-Fields

Canis Majoris

Circumstellar Envelopes

Author

E. M. Humphreys

European Southern Observatory (ESO)

K. Immer

European Southern Observatory (ESO)

M. D. Gray

University of Manchester

Elvire De Beck

Chalmers, Earth and Space Sciences, Onsala Space Observatory

Wouter Vlemmings

Chalmers, Earth and Space Sciences, Onsala Space Observatory

A. Baudry

Laboratoire d'Astrophysique de Bordeaux

A. M. S. Richards

University of Manchester

M. Wittkowski

European Southern Observatory (ESO)

Karl Torstensson

European Southern Observatory (ESO)

C. De Breuck

European Southern Observatory (ESO)

P. Moller

European Southern Observatory (ESO)

S. Etoka

University of Hamburg

Michael Olberg

Chalmers, Earth and Space Sciences, Onsala Space Observatory

Astronomy and Astrophysics

0004-6361 (ISSN) 1432-0746 (eISSN)

Vol. 603 A77- A77

Subject Categories

Astronomy, Astrophysics and Cosmology

DOI

10.1051/0004-6361/201730718

More information

Latest update

3/29/2018