DFT - experimental IR spectroscopy of lithiated single ion conducting perfluorinated sulfonated ionomers: Ion induced polarization band broadening
Journal article, 2017

The impact of state of hydration and ion exchange on the exchange site local symmetry of Aquivion and Nafion perfluorinated sulfonated ionomers (PFSI) are probed by transmission IR spectroscopy.Hydrated PFSI-H membranes exhibit a pair of bands corresponding to a dissociated sulfonate exchange site with a local 3-fold axis of symmetry (C3V). C3V bands are supplanted by C1 bands (no local symmetry) corresponding to the sulfonic acid form of the exchange site. At intermediate states of hydration C3V and C1 bands co-exist. Hydrated PFSI-Li exhibits C3V bands. In contrast to PFSI-H, the PFSI-Li C3V bands persist throughout dehydration, with a final aggregate structure where each Li+ provides 1/3 of a charge per sulfonate oxygen with an overall C3V motif. The C3V band FWHM values progressively increase (hydrated PFSI-H < hydrated PFSI-Li < dehydrated PFSI-Li) in the case of Nafion and Aquivion.FWHM trends are explained in terms of electric field induced exchange site polarization. The smaller Stokes Einstein radius of aquated Li+ enables closer proximity to the exchange site and thus greater induced band broadening. The relevant protonic Stokes Einstein radius must be derived from a tracer diffusion coefficient (D*): An effective protonic diffusion coefficient (D?) obtained from conductivity measurements (9.31 × 10? 5 cm2/s) yields a non-physical Stokes Einstein radii of 0.26 Å. A theoretically calculated D*, consistent with a group-1 diffusion coefficient trend analyses, yields an aquated proton Haven ratio (D*/D?) of 0.086, a value typical of solid state fast-ion conductors. The D* derived protonic Stokes Einstein radius of ~ 3.1 Å (relative to Li+ 2.01 Å) is consistent with the ion-to-exchange site proximity argument for the observed FWHM trends.

Density functional theory (DFT)

Lithiated

Single ion conductor

Perfluorinated sulfonated ionomer

Polarization

Aquivion

State of hydration

Band broadening

Ionomer

Infrared spectroscopy

Short side chain

Local symmetry

Author

Neili Loupe

NuVant Systems Inc.

Northeastern University

Nilufar Nasirova

NuVant Systems Inc.

Northeastern University

Jonathan Doan

NuVant Systems Inc.

Northeastern University

Danielle Valdez

University of Texas

Maurizio Furlani

Chalmers, Physics

Nicholas Dimakis

University of Texas

Eugene S. Smotkin

Northeastern University

NuVant Systems Inc.

Journal of Electroanalytical Chemistry

1572-6657 (ISSN)

Vol. 800 176-183

Subject Categories (SSIF 2011)

Condensed Matter Physics

DOI

10.1016/j.jelechem.2017.02.041

More information

Latest update

4/4/2024 1