Radiation emission from braided electrons in interacting wakefields
Journal article, 2017

The radiation emission from electrons wiggling in a laser wakefield acceleration (LWFA) process, being initially considered as a parasitic effect for the electron energy gain, can eventually serve as a novel X-ray source, which could be used for diagnostic purposes. Although several schemes for enhancing the X-ray emission in LWFA has been recently proposed and analyzed, finding an efficient way to use and control this radiation emission remains an important problem. Based on analytical estimates and 3D particle-in-cell simulations, we here propose and examine a new method utilizing two colliding LWFA patterns with an angle in between their propagation directions. Varying the angle of collision, the distance of acceleration before the collision and other parameters provide an unprecedented control over the emission parameters. Moreover, we reveal here that for a collision angle of 5°, the two wakefields merge into a single LWFA cavity, inducing strong and stable collective oscillations between the two trapped electron bunches. This results in an X-ray emission which is strongly peaked, both in the spatial and frequency domains. The basic concept of the proposed scheme may pave a way for using LWFA radiation sources in many important applications, such as phase-contrast radiography.

Author

Erik Karl Wallstén Wallin

Chalmers, Physics, Theoretical Physics

Arkady Gonoskov

Chalmers, Physics, Theoretical Physics

Mattias Marklund

Chalmers, Physics, Theoretical Physics

Physics of Plasmas

1070-664X (ISSN) 1089-7674 (eISSN)

Vol. 24 9 093101

Subject Categories

Atom and Molecular Physics and Optics

DOI

10.1063/1.4997440

More information

Created

10/7/2017