Acoustic Mapping of Thermohaline Staircases in the Arctic Ocean
Journal article, 2017

Although there is enough heat contained in inflowing warm Atlantic Ocean water to melt all Arctic sea ice within a few years, a cold halocline limits upward heat transport from the Atlantic water. The amount of heat that penetrates the halocline to reach the sea ice is not well known, but vertical heat transport through the halocline layer can significantly increase in the presence of double diffusive convection. Such convection can occur when salinity and temperature gradients share the same sign, often resulting in the formation of thermohaline staircases. Staircase structures in the Arctic Ocean have been previously identified and the associated double diffusive convection has been suggested to influence the Arctic Ocean in general and the fate of the Arctic sea ice cover in particular. A central challenge to understanding the role of double diffusive convection in vertical heat transport is one of observation. Here, we use broadband echo sounders to characterize Arctic thermohaline staircases at their full vertical and horizontal resolution over large spatial areas (100 s of kms). In doing so, we offer new insight into the mechanism of thermohaline staircase evolution and scale, and hence fluxes, with implications for understanding ocean mixing processes and ocean-sea ice interactions.

Physical oceanography

Imaging techniques

Author

Christian Stranne

Stockholm University

University of New Hampshire

Larry Mayer

University of New Hampshire

Thomas C. Weber

University of New Hampshire

Barry R. Ruddick

Dalhousie University

Martin Jakobsson

Stockholm University

Kevin Jerram

University of New Hampshire

Elizabeth Weidner

University of New Hampshire

Johan Nilsson

Stockholm University

Katarina Gårdfeldt

Chalmers, Chemistry and Chemical Engineering, Energy and Material

Scientific Reports

2045-2322 (ISSN) 20452322 (eISSN)

Vol. 7 1 Artno: 15192- 15192

Driving Forces

Sustainable development

Roots

Basic sciences

Subject Categories

Earth and Related Environmental Sciences

DOI

10.1038/s41598-017-15486-3

PubMed

29123176

More information

Latest update

3/1/2018 7