East-West paths to unconventional computing
Review article, 2017

Unconventional computing is about breaking boundaries in thinking, acting and computing. Typical topics of this non-typical field include, but are not limited to physics of computation, non-classical logics, new complexity measures, novel hardware, mechanical, chemical and quantum computing. Unconventional computing encourages a new style of thinking while practical applications are obtained from uncovering and exploiting principles and mechanisms of information processing in and functional properties of, physical, chemical and living systems; in particular, efficient algorithms are developed, (almost) optimal architectures are designed and working prototypes of future computing devices are manufactured. This article includes idiosyncratic accounts of ‘unconventional computing’ scientists reflecting on their personal experiences, what attracted them to the field, their inspirations and discoveries.

West

Unconventional computing

Spirituality

East

Author

Andrew Adamatzky

University of the West of England

Selim Akl

Queen's University

Mark Burgin

University of California at Los Angeles

Cristian S. Calude

University of Auckland

José Félix Costa

University of Lisbon

Mohammad Mahdi Dehshibi

Open University of Catalonia (UOC)

Yukio Pegio Gunji

Waseda University

Zoran Konkoli

Chalmers, Microtechnology and Nanoscience (MC2), Electronics Material and Systems

Bruce MacLennan

University of Tennessee

Bruno Marchal

Université libre de Bruxelles (ULB)

Maurice Margenstern

University of Lorraine

Genaro J. Martínez

National Polytechnic Institute Mexico

Richard Mayne

Mayne Bioanalytics

Kenichi Morita

Hiroshima University

Andrew Schumann

University of Information Technology and Management in Rzeszow

Yaroslav D. Sergeyev

University of Calabria

Georgios Ch Sirakoulis

Democritus University of Thrace

Susan Stepney

University of York

Karl Svozil

Vienna University of Technology

Hector Zenil

LABORES Scientific Research Lab

Progress in Biophysics and Molecular Biology

0079-6107 (ISSN)

Vol. 131 469-493

Subject Categories

Electrical Engineering, Electronic Engineering, Information Engineering

DOI

10.1016/j.pbiomolbio.2017.08.004

More information

Latest update

7/3/2021 1