GLINT Gravitational-wave laser INterferometry triangle
Journal article, 2017

When the universe was roughly one billion years old, supermassive black holes (10(3)-10(6) solar masses) already existed. The occurrence of supermassive black holes on such short time scales are poorly understood in terms of their physical or evolutionary processes. Our current understanding is limited by the lack of observational data due the limits of electromagnetic radiation. Gravitational waves as predicted by the theory of general relativity have provided us with the means to probe deeper into the history of the universe. During the ESA Alpach Summer School of 2015, a group of science and engineering students devised GLINT (Gravitational-wave Laser INterferometry Triangle), a space mission concept capable of measuring gravitational waves emitted by black holes that have formed at the early periods after the big bang. Morespecifically at redshifts of 15 < z < 30 (similar to 0.1 - 0.3 x 10(9) years after the big bang) in the frequency range 0.01 - 1 Hz. GLINT design strain sensitivity of 5 x 10(-24) 1/root Hz will theoretically allow the study of early black holes formations as well as merging events and collapses. The laser interferometry, the technology used for measuring gravitational waves, monitors the separation of test masses in free-fall, where a change of separation indicates the passage of a gravitational wave. The test masses will be shielded from disturbing forces in a constellation of three geocentric orbiting satellites.

Supermassive black holes

Laser interferometry

Gravitational waves

Author

S. Aria

University of Oslo

R. Azevedo

University of Porto

R. Burow

Universität Bremen

F. Cahill

Maynooth University

L. Ducheckova

Czech Technical University in Prague

A. Holroyd

University of Bristol

V. Huarcaya

National University of Singapore (NUS)

E. Jarvela

Aalto University

M. Kossagk

Technische Universität Dresden

C. Moeckel

Delft University of Technology

A. Rodriguez

Vienna University of Technology

F. Royer

Institut Superieur de l'Aeronautique et de l'Espace

R. Sypniewski

FOTEC Forschungs- und Technologietransfer GmbH

E. Vittori

Imperial College London

Madeleine Yttergren

Chalmers, Earth and Space Sciences, Extragalactic Astrophysics

Experimental Astronomy

0922-6435 (ISSN) 1572-9508 (eISSN)

Vol. 44 2 181-208

Subject Categories

Astronomy, Astrophysics and Cosmology

DOI

10.1007/s10686-017-9558-x

More information

Latest update

11/7/2022