Adipose Tissue Heterogeneity - Development and Application of Nonlinear Microscopy Methods
Doctoral thesis, 2018
In contrast to white adipose tissue (WAT) that serves as long-term fat storage in the form of neutral lipids, BAT uses these molecules as fuel to perform non-shivering thermogenesis, a process seen most commonly in hibernating animals and infants, and used to keep the body core temperature stable. Since BAT function is very different from WAT function, the two tissue types are often studied in conjunction in order to better identify the characteristics and the possibility to increase BAT activity and mass in obese adults (as a way to increase “parasympathetic” caloric expenditure).
This thesis work aims to investigate adipose tissue (AT) physiology on different levels: from interactions of isolated adipose-derived stem cells (ADSC) with matrices to the function of AT in mice. Special focus is directed towards the molecules at the center of adipose tissue physiology: triacylglycerols (TAGs). These are often neglected during analysis due to the difficulty to study them in a cellular context. Classical methods, like gas chromatography, usually rely on extraction of all lipids from a tissue depot requiring extensive sample preparation. Magnetic resonance imaging or matrix-assisted laser desorption/ionization followed by mass spectrometry imaging can be used to visualize lipids in their natural setting but do not offer high enough resolution or require extensive sample preparation. Thus, in this work, I focused on using a label-free chemical imaging approach called coherent anti-Stokes Raman scattering (CARS) microscopy to study TAGs in situ at increasing levels of biological complexity. This method requires almost no sample preparation and can visualize sub-micrometer-sized TAG storage depots based on their intrinsic chemistry.
First, CARS microscopy was used to follow ADSCs during the early stages of attachment and interaction with an extra cellular matrix (ECM); then CARS was employed to follow lipid accumulation during adipogenic differentiation to study how the ECM structure affects that process. Next, mature adipocytes were studied in ex vivo tissue sections. During this study mitochondrial activity was also investigated. In the following studies, not only the volume/number of lipid depots was of interest but also their contents. Therefore, we extended the CARS imaging with a spectral dimension, developing a new method to generate maps of TAG chain length and saturation, which were then be employed to see how high fat diet affects the lipids in BAT and WAT.
least squares decomposition
stem cells
multivariate spectral analysis
obesity
adipose tissue
adipogenesis
broadband coherent anti-Stokes Raman scattering
extracellular matrix
Author
Alexandra Paul
Chalmers, Biology and Biological Engineering, Chemical Biology
Micro- and nano-patterned elastin-like polypeptide hydrogels for stem cell culture
Soft Matter,;Vol. 13(2017)p. 5665-5675
Journal article
Increased Adipogenesis of Human Adipose-Derived Stem Cells on Polycaprolactone Fiber Matrices
PLoS ONE,;Vol. 9(2014)
Journal article
S. Sütt‡, E. Cansby‡, A. Paul, M. Amrutkar, E. Nuñez-Durán, B. W. Howell, S. Enerbäck, M. Mahlapuu - Protein Kinase STK25 Regulates Oxidative Capacity and Metabolic Dysfunction in Adipose Tissue of Obese Mice
A. Paul, C. Brännmark, M. Bonn, S. H. Parekh - Quantitative mapping of triacylglycerol chain length and saturation in situ using hyperspectral CARS microscopy
A. Paul, B. Chanclón C. Brännmark, P. Wittung-Stafshede, C. Olofsson, M. Bonn, I. Wernstedt Asterholm, S. H. Parekh - Differential rates of high fat diet-induced changes in oxidative versus lipid storing tissues in mice
Orsak till övervikt och fetma är en obalans mellan intag och förbrukning av energi. Denna obalans kan bero på genetiska, miljömässiga, beteendemässiga och/eller medicinska faktorer. Fetma är farligt för det ökar sannolikheten för att utveckla sjukdomar så som typ-2 diabetes, hjärtsjukdomar och cancer; därmed kan fetma bidra till en för tidig död. Även om det idag finns en ökad förståelse för orsaker, saknar vi en molekylär förståelse -och då också botemedel- som direkt påverkar fettvävnaden.
Fettvävnad ansågs länge vara en statisk vävnad som bara lagrar energi i form av triacylglycerol lipider. Idag vet man dock att denna vävnad har hormonella funktioner och att det finns så-kallat brunt fett även i vuxna. Brunt fett genererar värme ur triacylglyceriderna, och eftersom denna typ av fett kan öka energiförbrukning fokuseras idag mycket forskning på fysiologin hos just brunt fett.
Denna avhandling diskuterar nya experimentella metoder för visualisering av isolerade fettceller och vävnad. Jag har tagit fram en helt ny metod att studerar triacylglycerol lipider på molekylär nivå. Konventionella metoder kräver ofta extraktion av lipider vilket kan dölja information som finns när lipiderna är i sin naturliga miljö. Min metod bygger på avancerad mikroskopi som avbildar molekylernas egna rörelser på plats i cellerna. Jag har undersökt kopplingar mellan fettceller och stamceller och proteiner som finns i fettvävnad. Vidare har jag jämfört effekten av enzymer i vitt och brunt fett, samt undersökt hur lipider i vitt och brunt fett påverkas av kost med högt fett andel.
Mina resultat har gett en djupare förståelse för hur fettceller fungerar och samtidigt har jag bidragit med nya metoder för detaljerad analys. Tillsammans med fler studier kan detta bidra till att en dag kunna utveckla ett specifikt botemedel mot övervikt och fetma.
Subject Categories (SSIF 2011)
Biochemistry and Molecular Biology
Analytical Chemistry
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
ISBN
978-91-7597-674-7
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 4355
Publisher
Chalmers
KC, Kemivägen 4
Opponent: Julian Morger, University of Exceter, United Kingdom