Ground-Based measurements of the 2014-2015 holuhraun volcanic cloud (Iceland)
Journal article, 2018

The 2014-2015 Bárðarbunga fissure eruption at Holuhraun in central Iceland was distinguished by the high emission of gases, in total 9.6 Mt SO 2 , with almost no tephra. This work collates all ground-based measurements of this extraordinary eruption cloud made under particularly challenging conditions: remote location, optically dense cloud with high SO 2 column amounts, low UV intensity, frequent clouds and precipitation, an extensive and hot lava field, developing ramparts, and high-latitude winter conditions. Semi-continuous measurements of SO 2 flux with three scanning DOAS instruments were augmented by car traverses along the ring-road and along the lava. The ratios of other gases/SO 2 were measured by OP-FTIR, MultiGAS, and filter packs. Ratios of SO 2 /HCl = 30-110 and SO 2 /HF = 30-130 show a halogen-poor eruption cloud. Scientists on-site reported extremely minor tephra production during the eruption. OPC and filter packs showed low particle concentrations similar to non-eruption cloud conditions. Three weather radars detected a droplet-rich eruption cloud. Top of eruption cloud heights of 0.3-5.5 km agl were measured with ground-and aircraft-based visual observations, web camera and NicAIR II infrared images, triangulation of scanning DOAS instruments, and the location of SO 2 peaks measured by DOAS traverses. Cloud height and emission rate measurements were critical for initializing gas dispersal simulations for hazard forecasting.

SO2

Eruption monitoring

Bárðarbunga

Fissure eruption

Holuhraun

Cloud height

Gas

Author

M. A. Pfeffer

Icelandic Meteorological Office

Baldur Bergsson

Icelandic Meteorological Office

S. Barsotti

Icelandic Meteorological Office

Gerður Stefánsdóttir

Icelandic Meteorological Office

Bo Galle

Chalmers, Space, Earth and Environment, Microwave and Optical Remote Sensing

Santiago Arellano

Chalmers, Space, Earth and Environment, Microwave and Optical Remote Sensing

Alexander Vladimir Conde Jacobo

Chalmers, Space, Earth and Environment, Microwave and Optical Remote Sensing

Amy Donovan

King's College London

Evgenia Ilyinskaya

University of Leeds

Mike Burton

University of Manchester

A. Aiuppa

University of Palermo

Rachel C.W. Whitty

University of Leeds

Isla Simmons

University of Edinburgh

Þórður Arason

Icelandic Meteorological Office

Elín B. Jónasdóttir

Icelandic Meteorological Office

Nicole S. Keller

Environment Agency of Iceland

Richard F. Yeo

AUV Consultants

Hermann Arngrímsson

Icelandic Meteorological Office

Þorsteinn Jóhannsson

Environment Agency of Iceland

Mary K. Butwin

Icelandic Meteorological Office

University of Iceland

Robert A. Askew

University of Iceland

Stéphanie Dumont

University of Beira Interior

University of Iceland

Sibylle Von Löwis

Icelandic Meteorological Office

Þorgils Ingvarsson

Icelandic Meteorological Office

Alessandro La Spina

National Institute of Geophysics and Volcanology

Helen Thomas

University of Bristol

Fred Prata

AIRES Pty Ltd

Fausto Grassa

National Institute of Geophysics and Volcanology

G. Giudice

National Institute of Geophysics and Volcanology

Andri Stefánsson

University of Iceland

Frank Marzano

Sapienza University of Rome

Mario Montopoli

Consiglo Nazionale Delle Richerche

Luigi Mereu

Sapienza University of Rome

Geosciences (Switzerland)

2076-3263 (eISSN)

Vol. 8 1 29

Subject Categories

Meteorology and Atmospheric Sciences

Other Earth and Related Environmental Sciences

Geophysics

Roots

Basic sciences

DOI

10.3390/geosciences8010029

More information

Latest update

9/6/2018 1