Heat maximal function on a Lie group of exponential growth
Journal article, 2012

Let G be the Lie group R2 x R+ (semidirect product) endowed with the Riemannian symmetric space structure. Let X0; X1; X2 be a distinguished basis of left-invariant vector fields of the Lie algebra of G and write L for the corresponding Laplacian. In this paper, we show that the maximal function associated with the heat kernel of L is bounded from the Hardy space H1 to L1. We also prove that the heat maximal function does not provide a maximal characterization of the Hardy space H1

maximal function

Heat kernel

exponential growth

rd-spaces

Hardy space

multipliers

Lie groups

h-1

bmo

hardy-spaces

operator

Author

Peter Sjögren

University of Gothenburg

Chalmers, Mathematical Sciences, Mathematics

Maria Vallarino

Polytechnic University of Turin

Published in

Annales Academiae Scientiarum Fennicae Mathematica

1239629x (ISSN) 17982383 (eISSN)

Vol. 37 Issue 2 p. 491-507

Categorizing

Subject Categories (SSIF 2011)

Mathematical Analysis

Identifiers

DOI

10.5186/aasfm.2012.3729

More information

Latest update

3/15/2024