Heat maximal function on a Lie group of exponential growth
Journal article, 2012

Let G be the Lie group R2 x R+ (semidirect product) endowed with the Riemannian symmetric space structure. Let X0; X1; X2 be a distinguished basis of left-invariant vector fields of the Lie algebra of G and write L for the corresponding Laplacian. In this paper, we show that the maximal function associated with the heat kernel of L is bounded from the Hardy space H1 to L1. We also prove that the heat maximal function does not provide a maximal characterization of the Hardy space H1

Heat kernel

Lie groups

exponential growth

multipliers

rd-spaces

operator

bmo

Hardy space

maximal function

hardy-spaces

h-1

Author

Peter Sjögren

Chalmers, Mathematical Sciences, Mathematics

University of Gothenburg

Maria Vallarino

Annales Academiae Scientiarum Fennicae Mathematica

1239-629X (ISSN)

Vol. 37 2 491-507

Subject Categories

Mathematical Analysis

DOI

10.5186/aasfm.2012.3729

More information

Latest update

5/2/2018 1