A posteriori error estimates for streamline-diffusion and discontinuous Galerkin methods for the Vlasov-Maxwell system
Journal article, 2018
(SD) finite element method for the one and one-half dimensional relativistic Vlasov–
Maxwell system. The SD scheme yields a weak formulation, that corresponds to an
add of extra diffusion to, e.g. the system of equations having hyperbolic nature, or
convection-dominated convection diffusion problems. The a posteriori error estimates
rely on dual formulations and yield error controls based on the computable residuals.
The convergence estimates are derived in negative norms, where the error is split into
an iteration and an approximation error and the iteration procedure is assumed to converge.
Streamline diffusion · Vlasov–Maxwell · A posteriori error estimates
samverkan
Stability Convergence
Author
Mohammad Asadzadeh
Chalmers, Mathematical Sciences, Applied Mathematics and Statistics
Christoffer Standar
Chalmers, Mathematical Sciences, Applied Mathematics and Statistics
BIT Numerical Mathematics
0006-3835 (ISSN) 1572-9125 (eISSN)
Vol. 58 1 5-26Subject Categories (SSIF 2011)
Computational Mathematics
Control Engineering
Computer Science
Infrastructure
C3SE (Chalmers Centre for Computational Science and Engineering)
DOI
10.1007/s10543-017-0666-9