Mechanistic Approach to Corrosion of Zirconium by Water - A First Principle Study
Doctoral thesis, 2018
In this study density functional theory, DFT, is used to gain insights into the mechanism for water induced corrosion of zirconium. The purpose is to build understanding by deconstructing the corrosion phenomenon into computationally accessible and at the same time experimentally relevant quantum chemical modules. Anode and cathode reactions of the system are explored and a charge dependent oxygen vacancy transport through zirconia is identified. A detailed mechanism for electro-catalytic hydrogen evolution is articulated. It comprises formation of a transition metal associated hydride ion that recombines with a proton to form molecular hydrogen. The concentration dependence of the anode potential on absorbed oxygen in the alloy is examined along with the impact of co-absorption of oxygen and hydrogen in the α-Zr matrix. Two channels are taken to jointly constitute the oxidation process: one according to classical oxidation theory involving hydrogen evolution and the second reflected by inwards transport of protons causing hydrogen pick-up. Wagner theory and Tedmon kinetics are modified to include effects of oxide scale charging by augmenting the activation energy for diffusion of charged oxygen vacancies to also include the actual charging upon formation. Hydrogen assisted build-up of nano-porosity is also addressed.
zirconium
hydrogen pick-up
corrosion
oxygen vacancy
DFT
Author
Mikaela Lindgren
Chalmers, Chemistry and Chemical Engineering, Energy and Material
Toward a Comprehensive Mechanistic Understanding of Hydrogen Uptake in Zirconium Alloys by Combining Atom Probe Analysis With Electronic Structure Calculations
ASTM 17th International Symposium on Zirconium in the Nuclear Industry, Hyderabad, Andhra Pradesh, India, 3-7 February 2013,;Vol. STP 1543(2015)p. 515-539
Paper in proceeding
Impact of Additives on Zirconium Oxidation by Water: Mechanistic insights from first principles
RSC Advances,;Vol. 3(2013)p. 21613-21619
Journal article
Confinement dependence of electro-catalysts for hydrogen evolution from water splitting
Beilstein Journal of Nanotechnology,;Vol. 5(2014)p. 195-201
Journal article
On the fate of hydrogen during zirconium oxidation by water: Effect of oxygen dissolution in α-Zr
RSC Advances,;Vol. 4(2014)p. 11050-11058
Journal article
Lindgren, M., Geers, C., Panas, I. Oxidation of Zr Alloys by Water Theory from First Principles
Oxygen Vacancy Formation, Mobility, and Hydrogen Pick-up during Oxidation of Zirconium by Water
Oxidation of Metals,;Vol. 87(2017)p. 355-365
Journal article
Possible origin and roles of nano-porosity in ZrO2 scales for hydrogen pick-up in Zr alloys
Journal of Nuclear Materials,;Vol. 492(2017)p. 22-31
Journal article
Genom att använda kvantkemiska beräkningar har energitillstånd, och energibarriärerna mellan dessa, kartlagts för oxiden och metallen. Enligt termodynamiken dominerar kemiska reaktioner mot låga energitillstånd, genom låga energibarriärer. En sådan kedja av tillstånd som knyter samman reaktant (zirconium och vatten) och produkt (zirconiumoxid, vätgas och upptaget väte) har identifierats. Den beskriver en process som innefattar nybildningen av oxid, bildandet av syrevakanser i oxiden, diffusion av dessa vakanser och utbytet av elektroner och vätejoner mellan den underliggande metallen och vattnet via vakanserna.
För olika zirconiumlegeringar är energinivåerna olika, om tillstånden har högre energi eller barriärerna dem emellan är högre kommer processen vara hämmad. Tidigare experimentell data visar samma trend som kartläggningen förutsäger, vilket ger trovärdighet till förklaringsmodellen och visar på ett nytt sätt att identifiera material med lovande korrosionsegenskaper.
Hydrogen pick-up in zirconium alloys
Westinghouse Electric Sweden AB (Väteupptag), 2011-01-01 -- 2015-12-31.
Subject Categories
Inorganic Chemistry
Corrosion Engineering
Roots
Basic sciences
Areas of Advance
Materials Science
ISBN
978-91-7597-555-9
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 4236
Publisher
Chalmers
10:an, Kemivägen 10.
Opponent: Prof. Dr. Axel Groß, Institut für Theoretische Chemie, Universität Ulm, Germany