Multi-Gigabaud Solutions for Millimeter-wave Communication
Licentiate thesis, 2018
Millimeter-wave frequency bands have the bandwidth in the order of GHz which provide great opportunities to realize high data rate communications. In this case, millimeter-wave frontend modules and wideband modems are needed in communication systems. In this thesis, a 40 Gbps real-time differential quadrature phase shift keying (DQPSK) modem has been presented to support high-speed communications [A]. As a complete system, it aims to work together with the D-band frontend module published in [1] providing more than 40 GHz bandwidth. In this modem, the modulator is realized in a single field programmable gate array (FPGA) and the demodulator is based on analog components.
Although millimeter-wave frequency bands could provide wide available bandwidth, it is challenging to generate high output power of the carrier signal. In addition, the transmitter needs to back off several dB in output power in order to avoid the non-linear distortion caused by power amplifiers. In this thesis, an outphasing power combining transmitter is proposed [B] to use the maximum output power of power amplifiers while maintaining the signal quality at the same time. This transmitter is demonstrated at E-band with commercially available components.
Increasing the spectrum efficiency is an additional method to enhance the transmission capacity. High order modulation signals such as quadrature amplitude modulation (QAM) signals are commonly used for this purpose. In this case, receivers usually require coherent detection in order to demodulate the signals. Limited by the sampling rate of the analog to digital converters (ADCs), the traditional digital carrier recovery methods can be only applied to a symbol rate lower than the sampling rate. A synchronous baseband receiver is proposed [C] with a carrier recovery subsystem which only requires a low-speed ADC with a sampling rate of 100 MSps.
Millimeter-wave communication
power amplifier
mobile network
power combining
outphasing
high order modulation
DQPSK
modem
pilot
16-QAM
non-linear distortion
E-band
high data rate
carrier recovery
Author
Sining An
Chalmers, Microtechnology and Nanoscience (MC2), Microwave Electronics
A 40 Gbps DQPSK Modem for Millimeter-wave Communications
Asia-Pacific Microwave Conference Proceedings APMC 2015,;Vol. 1(2016)
Paper in proceeding
An 8 Gbps E-band QAM Transmitter Using Symbol-based Outphasing Power Combining Technique
Radio-Frequency Integration Technology (RFIT2017),;(2017)p. 150-152
Paper in proceeding
S. An, Z. He, J. Chen, H. Han, H. Zirath, A synchronous baseband receiver for high data rate millimeter-wave communication systems
Areas of Advance
Information and Communication Technology
Infrastructure
Kollberg Laboratory
Driving Forces
Sustainable development
Innovation and entrepreneurship
Subject Categories (SSIF 2011)
Telecommunications
Communication Systems
Other Electrical Engineering, Electronic Engineering, Information Engineering
Technical report MC2 - Department of Microtechnology and Nanoscience, Chalmers University of Technology: 406
Publisher
Chalmers
Luftbryggan, Kemivägen 9, Chalmers
Opponent: Dr. Lars Aspemyr, the R & D Microwave Engineer at SiversIMA AB, Sweden