Seaweeds for biorefinery on the Swedish west coast
Conference poster, 2017
For seaweeds there are other limitations, but to a large extent these relate to them not being domesticized and studied to the same extent as crops or terrestrial plants. Which means they could possibly be overcome. There are industrial processes for alginate and carrageenan already, but the variety of seaweeds gives possibility of new innovation in areas such as materials, food components and bioenergy. To be able to evaluate the potential and identify targets for cultivation as well as breeding the basic composition of a variety of seaweeds has to be known. Studies have shown great intra-species variation in composition depending on abiotic and biotic factors. Hence, suitable targets for future production of seaweed biomass could differ from place to place and not only by natural occurrence.
In this study, 22 seaweed species were collected from and around the national park of Kosterhavet in Sweden to elucidate their basic biochemical composition. Analyses included major constituents (total carbohydrates, total protein, ash and water content) and elemental composition (C, H, N, S, P and 17 heavy metals/micronutrients). From these analyses the picture becomes clear that the main problems with seaweed biomass for biorefinary is the ash (118-419 g(kg dry weight)-1) and its water content (633-875 g(kg wet weight)-1). However, the sugar content (267- 646 g(kg dry weight)-1) makes the biomass very interesting for utilization in a biotechnological process based on a sugar platform as well as materials. With this study, we hope to have lain the ground for future innovation and potential marine industries on the Swedish west coast.
biochemical composition
Seaweeds
biorefinery
metals
water content
Author
Joakim Olsson
Chalmers, Biology and Biological Engineering, Industrial Biotechnology
Gunilla B. Toth
University of Gothenburg
Eva Albers
Chalmers, Biology and Biological Engineering, Industrial Biotechnology
Nantes, France,
Areas of Advance
Energy
Life Science Engineering (2010-2018)
Subject Categories
Chemical Process Engineering
Other Environmental Engineering
Bioenergy