Data Quality Problems in Discrete Event Simulation of Manufacturing Operations
Journal article, 2018

High-quality input data are a necessity for successful discrete event simulation (DES) applications, and there are available methodologies for data collection in DES projects. However, in contrast to standalone projects, using DES as a daily manufacturing engineering tool requires high-quality production data to be constantly available. In fact, there has been a major shift in the application of DES in manufacturing from production system design to daily operations, accompanied by a stream of research on automation of input data management and interoperability between data sources and simula- tion models. Unfortunately, this research stream rests on the assumption that the collected data are already of high qual- ity, and there is a lack of in-depth understanding of simulation data quality problems from a practitioners’ perspective. Therefore, a multiple-case study within the automotive industry was used to provide empirical descriptions of simulation data quality problems, data production processes, and relations between these processes and simulation data quality problems. These empirical descriptions are necessary to extend the present knowledge on data quality in DES in a prac- tical real-world manufacturing context, which is a prerequisite for developing practical solutions for solving data quality problems such as limited accessibility, lack of data on minor stoppages, and data sources not being designed for simula- tion. Further, the empirical and theoretical knowledge gained throughout the study was used to propose a set of practi- cal guidelines that can support manufacturing companies in improving data quality in DES.

Discrete Event Simulation

maintenance

manufacturing

input data management

data quality

data collection

Author

Jon Bokrantz

Chalmers, Industrial and Materials Science, Production Systems

Anders Skoogh

Chalmers, Industrial and Materials Science, Production Systems

Dan Lämkull

Volvo Cars

A. Hanna

Volvo Group

Terrence Perera

Sheffield Hallam University

Simulation

0037-5497 (ISSN) 17413133 (eISSN)

Vol. 94 11 1009-1025

Streamlined Modeling and Decision Support for Fact-based Production Development (StreaMod)

VINNOVA (2013-04726), 2013-12-02 -- 2016-12-01.

Subject Categories (SSIF 2011)

Mechanical Engineering

Production Engineering, Human Work Science and Ergonomics

Areas of Advance

Production

DOI

10.1177/0037549717742954

More information

Latest update

2/19/2019